ENDBERICHT

CORE Organic II Projekt Nr. 100787 BIO-INCROP

"Innovative Anbaumethoden zur Verbesserung der Bodengesundheit im biologischen Obstbau"

zusammengestellt von

Dr. Thomas Rühmer und Thomas Schiefecker, BSc

Amt der Steiermärkischen Landesregierung A10 Land- und Forstwirtschaft Versuchsstation Obst- und Weinbau Haidegg

Graz, im Dezember 2014

Inhalt

1	Ein	leitu	ng	4
	1.1	Bod	lenmüdigkeit – Apple Replant Disease	4
	1.1 Dis		Symptome der Bodenmüdigkeit bzw. der Nachbaukrankheit (Apple Repla	
	1.1	•	Abiotische Ursachen der Bodenmüdigkeit	
	1.1		Biotische Ursachen (Apple Replant Disease)	
	1.2		ogische Bodenbehandlung	
	1.3		eutung von Nachbauproblemen in der Steiermark	
2			I und Methoden	
	2.1		timmung der Pathogene in den Bodenproben	
	2.2		ereller Versuchsaufbau der Topfversuche	
	2.3		2, Task 1 und WP 3, Task 1	
	2.4		suchsanordnung im Jahr 2012	
	2.4		WP 2 – Task 1: Komposte und organische Zusätze	
	2.4	.2	WP 3 – Task 1: Biologische Bodenverbesserer und Bodenhilfsstoffe	
	2.5	Vers	suchsanordnung im Jahr 2013	
	2.5 in l		WP 2 – Task 1 in Kombination mit WP 3 Task 1: Komposte und organisch vination mit biologischen Bodenverbesserern	
	2.6		suchsanordnung im Jahr 2014	
	2.6 in I		WP 2 – Task 1 in Kombination mit WP 3 Task 1: Komposte und organisch bination mit biologischen Bodenverbesserern	
	2.7		suchsstandort und allgemeiner Versuchsaufbau für WP 4, Task 1	
	2.8		4 – Task 2: Weiterführung von Freilandversuchen	
3	Erg		SSE	
	3.1	PCR	R-Bestimmung der Bodenproben für die Topfversuche	33
	3.2		fversuche 2012 aus WP2	
	3.2	.1	Triebzuwachs	33
	3.2	.2	Trockengewicht der Triebe	34
	3.3	Top	fversuche 2012 aus WP3	36
	3.3	.1	Triebzuwachs	36
	3.3	.2	Trockengewicht der Triebe	36
	3.4	Top	fversuche 2013 aus WP2 und WP3	39
	3.4	.1	Triebzuwachs	39
	3.4	.2	Trockengewicht Triebe	41
	3.4	.3	Trockengewicht der Wurzeln	43

	3.5	Topfversuche 2014 aus WP2 und WP3	45
	3.5	.1 Trieblängenzuwachs	45
	3.5	.2 Trockengewicht Triebe	47
	3.5	.3 Frischgewicht der Triebe	49
	3.5	.4 Trockengewicht Wurzeln	51
	3.6	Zusammenfassung der Ergebnisse aus den Topfversuchen 2012-2014	55
	3.7	WP 4 Task 1 – Neu angelegter Freilandversuch	57
	3.7	.1 Ergebnisse 2013	57
	3.7	.2 Ergebnisse 2014	59
	3.8	WP 4 – Task 2: Weiterführung von Freilandversuchen	61
4	DIS	KUSSION	62
	4.1 Versu	Vergleich der Pathogenzusammensetzung vor und nach Sterilisation im verwendeter chsboden	
	4.2 Mikro	Einsatz von Kompost oder anderem organischem Material zur Förderung bodenbürtig	_
	4.3	Einsatz von biologischen Bodenverbesserern zur Bekämpfung der Nachbaukrankheit	
	4.4	Kombination von Kompost und biologischen Bodenverbesserern	65
	4.5	Generelles Fazit	65
5	Lite	eratur	66
6	Anł	hang	70
	6.1	Abbildungsverzeichnis	70
	6.2	Tabellenverzeichnis	72

1 Einleitung

1.1 Bodenmüdigkeit – Apple Replant Disease

Nachbauprobleme bzw. Bodenmüdigkeit beim Apfelanbau beziehen sich auf schwaches Wachstum von Bäumen, die auf bereits bestehenden Anlagen nachgepflanzt werden. Das Problem ist weit verbreitet und über alle Obstbauregionen weltweit verteilt. Die Ursachen für diese Symptome sind vielfältig und können sehr unterschiedlich sein.

Sowohl biotische als auch abiotische Ursachen kommen in Frage. Der Begriff "Apple replant disease (ARD)" – "Nachbaukrankheit beim Apfel" - bezeichnet die Symptomatik, die von biotischen Faktoren ausgelöst wird. Sie wird sozusagen in die Kategorie "Bodenbürtige Schaderreger" eingereiht. ARD ist eine der Komponenten der Bodenmüdigkeit. Ursachen können Pilze, Bakterien (im speziellen Aktinomyceten), Nematoden und deren Interaktionen sein. In Folge wird also von ARD die Rede sein, wenn die Ursachen der Nachbausymptome biotischer Natur sind.

Abiotische Faktoren die Schwachwüchsigkeit verursachen können, sind Phytotoxine, Nährstoffungleichgewichte, hoher oder niedriger pH-Wert, Bodenstruktur und Drainage, also Mangel oder Überschuss an Wasser im Boden.

In Folge wird von Bodenmüdigkeit gesprochen, wenn die Ursachen sowohl abiotischer als auch biotischer Natur sein können.

1.1.1 Symptome der Bodenmüdigkeit bzw. der Nachbaukrankheit (Apple Replant Disease)

H. Klaus hat bereits im Jahre 1939 das Phänomen der Bodenmüdigkeit folgendermaßen definiert: "Die Bodenmüdigkeit ist der durch den wiederholten Anbau eintretende Verlust der Eignung eines Bodens, einer bestimmten oder ähnlich wirkenden Pflanzenart als Substrat zu dienen, deren Ursache nicht bekannt, aber pflanzenspezifisch ist" (Szabo, 1999).

Die Symptomatik der Bodenmüdigkeit ist nicht sehr eindeutig ausgeprägt. Man erkennt die Anzeichen für das Vorliegen eines Bodens aufgrund von mehrmaliger Pflanzung derselben Kultur meist erst, wenn man einen direkten Vergleich mit Pflanzen sehen kann, die auf jungfräulichem Boden gepflanzt wurden. Das markanteste Zeichen ist eine Schwachwüchsigkeit des Sprosssystems. Da ein derartiges Anzeichen aber auch durch unzureichende Nährstoff- oder Wasserversorgung ausgelöst werden kann, ist eine Verwechslung mit anderen physiologischen Problemen, die die Pflanze in ihrem Wachstum beeinträchtigt, leicht möglich.

Auffallend ist also zuerst ein stark verringertes Spross- und Wurzelwachstum. Markant für die ARD ist auch die sehr starke Persistenz, d.h. die Krankheit bleibt lange im Boden gegenwärtig. Tritt an einem Standort die Bodenmüdigkeit auf, so bleibt sie auf eine bestimmte Fläche begrenzt und breitet sich im Boden nicht weiter aus. Sobald betroffene Pflanzen wieder in einen jungfräulichen Boden umgepflanzt werden, zeigen sie normales Wachstum (Friedrich & Fischer, 2000; Maurer, 2003). Interessant ist dabei auch der Aspekt, dass bereits nach einem einmaligen Anbau mit relativ kurzer Standzeit (wie z.B. in Baumschulen) Symptome der Bodenmüdigkeit bzw. der ARD auftreten können (Maurer, 2003; Szabo, 1999).

Als typische Kennzeichen der Apple Replant Disease wird ein verringertes Wachstum sowohl von Trieb als auch von der Wurzel angeführt. Weiters bleiben die Blätter kleiner, was insgesamt eine verringerte Assimilationsfläche bewirkt, zusätzlich werden die Internodien kürzer. An den Wurzeln entstehen bereits innerhalb weniger Tage nach der Pflanzung Läsionen. Die feinen Wurzelhärchen sind in Größe und Anzahl markant reduziert. Der Kortex und die Wurzelepidermis können sogar gänzlich verfaulen (Jackson, 2003).

Bosshard et al. (2004) beschreiben die Symptome der Bodenmüdigkeit als "mangelnde Wuchsfreudigkeit trotz geeigneten Standorts, angepasster Düngung, Bewässerung und Pflanzenschutzes", die häufig beim Nachbau von Kirsche nach Kirsche und von Apfel nach Apfel auftritt.

Rumberger et al. (2007) gehen davon aus, dass das Wachstum der Bäume um ca. 10% geringer ist, wenn die Bäume wieder in die alte Reihe gepflanzt werden im Vergleich zu Pflanzungen auf jungfräulichen Boden. Auswirkungen auf den Ertrag kann man allerdings im ersten Ertragsjahr noch keine erkennen. Die Autoren sprechen allerdings von reduzierten kumulierten Erträgen. Mazzola geht von einem Schaden von 100.000 US-\$ pro Hektar in 10 Jahren durch ARD aus (Granatstein & Mazzola, 2001). In zahlreichen Publikationen findet man Angaben über geschätzte Einbußen, die meist im Bereich von 40-50% Ertragsminderung liegen. Neben dem absoluten Ertrag ist auch eine Reduktion der Fruchtgröße von ca. 10% in der Literatur zu finden (Fischer & Weber, 2005).

1.1.2 Abiotische Ursachen der Bodenmüdigkeit

1.1.2.1 Phytotoxine

Bei Pfirsich konnten bereits in den 60er Jahren Phytotoxine, die beim Abbau alter Wurzelteile entstanden sind, als Hauptursache der Bodenmüdigkeit festgestellt werden (Patrick & Koch, 1963; Patrick & Tousson, 1965). Blausäure und Benzaldehyde werden als Toxine beim Abbau freigesetzt. Kondensierte Tannine (Biflavanol) und andere Verbindungen tragen ebenso zur Bodenmüdigkeit beim Pfirsich bei. Beim Apfel konnten Phytotoxine im speziellen bisher nicht als Ursache von Nachbauproblemen festgestellt werden.

1.1.2.2 Nährstoffungleichgewicht

Schon sehr früh gingen Überlegungen in die Richtung, dass in alten Obstanlagen gewisse Nährstoffe im Mangel vorliegen und so möglicherweise das Wachstum der nachgepflanzten Bäume eingeschränkt wird. Liegen Stickstoff (N), Phosphor (P) oder Kalium (K) im Mangel vor, verursacht das einen physiologischen Stress in der Pflanze, was wiederum in verringertem Wachstum sichtbar wird.

Einige Untersuchungen haben gezeigt, dass das Wachstum von Apfelbäumen durch Zugabe von Monoammonphosphat in den Boden vor der Pflanzung verstärkt werden kann (Slykhuis & Li, 1985; Uthkede & Smith, 1994; Wilson et al., 2004).

1.1.2.3 Boden-pH

Der Säuregehalt im Boden scheint ebenfalls einen deutlichen Einfluss in Nachbauanlagen zu haben. Einige Wissenschafter haben in den 60er und 70er Jahren festgestellt, dass eine Ansäuerung des Bodens das Problem der Bodenmüdigkeit lösen kann (Hoestra, 1968; Hein, 1972; Jonkers & Hoestra, 1978). Böden mit niedrigem pH-Wert sind weit weniger empfindlich gegenüber Bodenmüdigkeit als Böden mit nahezu neutralem pH-Wert. In England konnte in Böden mit pH-Werten zwischen 4,0 und 4,5 keine Bodenmüdigkeit beobachtet werden, obwohl Apfelbäume bei niedrigen pH-Werten grundsätzlich bekanntermaßen nicht gut wachsen (Upstone, 1977).

1.1.2.4 Bodenstruktur und Drainage:

Bodenbearbeitung in der Obstanlage ist eine wichtige Kulturmaßnahme, um auf Nachbauböden überhaupt erfolgreich nachpflanzen zu können (Yadava & Doud, 1980). Die Bearbeitung des Bodens verbessert die Bodenstruktur, das Drainageverhalten und die Belüftung junger Wurzeln. Sowohl Überschuss als auch Mangel an Wasser kann Schwachwüchsigkeit bei jungen Obstbäumen verursachen.

1.1.3 Biotische Ursachen (Apple Replant Disease)

Die wichtigsten Kennzeichen von Nachbaukrankheiten sind die Spezifität und Persistenz. Viele Nachbaukrankheiten sind hoch persistent, bleiben über mehr als 10 Jahre bestehen (Hoestra, 1994).

Apple Replant Disease kann durch Bodendesinfektion, -sterilisation oder –pasteurisation behoben werden. Daher wird die Ursache biotischer Natur angenommen (Mai & Abawi, 1981, Slykhuis & Li, 1985). Diese Behandlungen haben eine schädigende Wirkung auf Pilze, Bakterien und Nematoden. Diverse Wissenschafter haben sowohl Pilze als auch Bakterien (Aktinomyceten) und Nematoden aus Bäumen isoliert, die an der Nachbaukrankheit (ARD) gelitten haben.

1.1.3.1 Pilze

Verschiedene Arten von Pilzen, die Wurzelfäulen auslösen, werden in der Literatur als Ursachen der ARD angegeben. Die Pilze gehören zu den drei taxonomischen Gruppen Oomyceten, Hypomyceten und Basidiomyceten.

Einhellig scheint die Meinung bei der Ursache der Replant Disease bei Süßkirschen zu sein. Hier wird beinahe immer Thielaviopsis basicola als Verursacher angegeben.

Beim Apfel können die pilzlichen Erreger den vier Gattungen Rhizoctonia, Cylindrocarpon, Phytophthora und Pythium (Sewell, 1981) zugeordnet werden. Je nach Standort ist dabei meist nur eine Gattung als Hauptursache für die Symptome verantwortlich (Mazzola, 1998).

Abb. 1: Konidiosporen von Thielaviopsis basicola

Als wichtigste Arten sollen hier Rhizoctonia solani, Cylindrocarpon destructans, C. olidium, Phytophthora cactorum, P. syringae, Pythium abappressorium und P. attrantheridium genannt werden. Fusarium spp. scheinen in einigen Untersuchungen ebenfalls als Erreger auf, konnten in Washington State aber nicht als Erreger der Krankheit nachgewiesen werden (Mazzola, 1998). In einer Arbeit aus Südtirol konnten die wurzelbesiedelnden Pilzarten Rhizoctonia solani, Pythium sp. und Cylindrocarpon sp. ebenfalls als pathogen bewertet werden, wenngleich die Virulenz von Rhizoctonia und Pythium sehr stark schwankt. Fusarium oxysporum und Aphanomyces-Arten, die ca. 40% der wurzelbesiedelnden Pilzmikroflora ausmachen, konnten als nicht pathogen beim Apfel eingestuft werden (Manici et al., 2003).

Bereits Ende der 80er Jahre haben kanadische Wissenschafter Hyphen von Rhizoctonia in

Wurzeln von Apfelbäumen mit ARD-Symptomen nachgewiesen (Caruso et al., 1989). Es wurden damals allerdings keine weiteren Versuche unternommen, den Pilz zu isolieren bzw. dessen Pathogenität nachzuweisen. Mazzola konnte etwa 10 Jahre später zeigen, dass Rhizoctonia solani zum Absterben junger Pflanzen in Neuanlagen beitragen kann (Mazzola, 1997).

1.1.3.2 Aktinomyceten

Bereits Ende der 60er Jahr vermutete Hoestra (1968) in Holland, dass Aktinomyceten bei der Entstehung der ARD beteiligt sein könnten. Die ostdeutsche Arbeitsgruppe um Otto und Winkler führte in zahlreichen Publikationen Beweise für die Beteiligung der Aktinomyceten auf, indem sie die Stärke der Symptomausprägung mit der Anwesenheit von Aktinomyceten in Korrelation setzten (Otto & Winkler, 1977). Bekannt ist

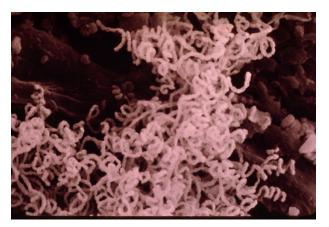


Abb. 2: Am Beispiel von Streptomyces erkennt man das typische mycelartige Wachstum der Aktinomyceten.

weiters, dass Aktinomyceten durch die Epidermis der Faserwurzeln in die Wurzelrinde eindringen und deren Zellen besiedeln können. Das kann zur Zerstörung der Wurzelrinde und zum Absterben der Faserwurzeln führen (Friedrich & Fischer, 2000). Aktinomyceten bilden Dauerformen, die sich nach dem Zerfallen der befallenen Wurzelteile im Boden anreichern und durch die erhöhte Keimzahl im Boden bei Neupflanzung die jungen Bäume befallen können (Szabo, 1999).

Mit Hilfe elektronenmikroskopischer Verfahren konnten in Wurzeln von Apfelpflanzen aus einem "müden" Boden vermehrt Aktinomyceten nachgewiesen werden (Szabo, 1999). In deutscher Fachliteratur findet man nahezu ausschließlich die Hypothese, dass die Nachbaukrankheit von Aktinomyceten ausgelöst wird. So beschreiben beispielsweise Fischer & Weber (2005), dass auch bei Birnen, Apfelbeere, Quitte und Eberesche Aktinomyceten in den Faserwurzeln nachgewiesen werden konnten.

Neuere Untersuchungen bestätigen zwar eine Beteiligung von Aktinoymceten an der Apple Replant Disease, es wird allerdings angenommen, dass sie nicht als Auslöser für die Symptome verantwortlich sind (Mazzola, pers. Mitteilung). Die genaue Rolle der ubiquitär im Boden vorkommenden Aktinomyceten ist aber bisher immer noch vollkommen unklar.

Abb. 3: Aktinomyceten wurden auch in den Wurzeln der Apfelbeere (Aronia) nachgewiesen.

1.1.3.3 Bakterien

Da Versuche zur Bekämpfung der Bodenmüdigkeit mit Fungiziden und Nematiziden fehlschlugen, wurden Bakterien als Ursache angenommen. Zwei Stämme von Bacillus subtilis konnten in Kanada das Wachstum junger Apfelbäume beeinträchtigen (Uthkede & Li, 1988). Auch eine Untersuchung aus der Tschechoslowakei (Catska, 1988) weist in diese Richtung. In neueren Publikationen findet man allerdings keine Hinweise mehr auf eine Beteiligung von Bakterien an ARD.

So weist beispielsweise Mazzola (1998) die Beteiligung von Bakterien an ARD klar zurück, da eine Behandlung mit Chloramphenicol die Bodenbakterien dezimiert hat, das Wachstum der Apfelpflanzen allerdings unbeeinflusst blieb.

1.1.3.4 Nematoden

Offensichtlich lösen auch Nematoden

Nachbaukrankheiten sowohl bei Apfel, als auch bei Pfirsich und Kirschen aus (Bird, 1968; Mai & Abawi, 1981). Hierbei spielt vor allem die Art Pratylenchus penetrans eine bedeutende Rolle (Uthkede et al., 1992). Offensichtlich spielen aber auch Interaktionen von Nematoden mit dem Vorhandensein bestimmter Pilze und/oder Bakterien eine Rolle bei der Apple

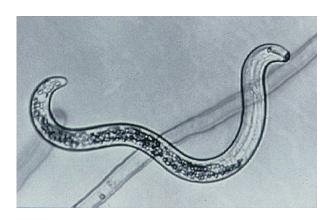


Abb. 4: Pratylenchus penetrans.

Replant Disease. Schon Ende der 50er Jahre konnte gezeigt werden, dass ein Angriff der Wurzeln durch Nematoden diese auch anfälliger für andere Bodenmikroorganismen macht (Mountain & Patrick, 1959).

Grundsätzlich ist ein Befall mit Nematoden in leichten, sandigen Böden problematischer bzw. häufiger als in schweren Böden (Hoestra, 1968).

1.2 Biologische Bodenbehandlung

Aufgrund der sehr umstrittenen chemischen Wirkstoffe, die zur Entseuchung von Nachbauböden eingesetzt werden könnten, und wegen der unsicheren Wirkung flüchtiger Substanzen bei verschiedener Bodentemperatur und -feuchtigkeit ist die Forschung auf der Suche nach Alternativen. Diese Alternativen basieren meist auf einer biologischen Wirkungsweise, bei der mögliche Antagonisten im Boden gestärkt werden sollen.

In Böden, auf denen eine Obstkultur länger angebaut wird, ändert sich im Laufe der Zeit die Rhizosphären-Mikroflora. Nicht alle Mikroorganismen im Boden haben einen direkten Einfluss auf die Pflanzenwurzel, aber es gibt Arten, die vermutlich aufgrund der Bildung phytotoxischer Substanzen das Wachstum der Pflanzen beeinträchtigen. Die Anzahl solcher Mikroorganismen im Boden steigt mit dem Alter der Anlage an (Catska et al., 1982).

Die Zugabe von *Bacillus subtilis*-Präparaten zeigt in manchen Untersuchungen Effekte auf das Wachstum von Apfelbäumen auf Nachbauböden (Uthkede & Smith, 1994). B. subtilis wirkt auf einige Pilze, die ARD auslösen können, im Laborversuch hemmend. Außerdem ist das Bakterium antagonistisch wirksam gegen Phytophthora cactorum (Uthkede, 1984). Möglicherweise bildet es auch Phytohormone, die das Wachstum der Apfelbäume stimulieren.

So konnte die Arbeitsgruppe um Uthkede in einer Untersuchung zeigen, dass das Wachstum von Bäumen nach Zugabe von B. subtilis doppelt so hoch war (bezogen auf den Stammquerschnitt) als in einem Boden, der mit Phytophthora cactorum verseucht wurde (Uthkede et al., 2001). Auch der Ertrag war um 50% höher als in der unbehandelten Kontrolle. In dieser Untersuchung zeigte auch der Zusatz von Essigsäure eine Wirkung auf den Ertrag und das Wachstum der Apfelbäumchen. Neem-Öl zeigte keinen Effekt.

Mazzola (1999) fand in einer Untersuchung heraus, dass die Bakterienarten *Burkholderia cepacia* und *Pseudomonas putida* antagonistisch auf pathogene Pilze im Boden wirken. B. cepacia wirkt antagonistisch auf Rhizoctonia solani und Pythium spp., P. putida nur auf Rhizoctonia solani. Der amerikanische Wissenschafter schlägt eine Vorkultur mit Weizen vor, um die antagonistische Bakterienpopulation auf Nachbauböden zu stärken, und gleichzeitig den ARD-erregenden Pilzkomplex zu unterdrücken (Gu, Y.H. & Mazzola, 2003). So konnte er zeigen, dass durch die Weizen-Vorkultur die Pilzgattungen Rhizoctonia und Pythium reduziert, während Cylindrocarpon und Fusarium erhöht wurde.

Abb. 5: Weizen als Vorkultur begünstigt die Zusammensetzung der Bodenmikroflora.

Ebenso wurde die Population von Pratylenchus penetrans reduziert (Granatstein & Mazzola, 2001). In einer anderen Untersuchung zeigte er,

dass es durch den Anbau verschiedener Weizen-Arten zu einer Verschiebung der mikrobiellen Zusammensetzung im Boden kommt. Die Verschiebung geht von Pseudomonas fluorescens hin zu Pseudomonas putida (Mazzola et al., 2002). Mark Mazzola ist auch Patentinhaber für ein Produkt mit P. putida zur Bekämpfung von Nachbaukrankheiten an Obstgehölzen in den USA (United States Patent Nr. 5,948,671).

Mit der Weizen-Vorkultur konnte allerdings das Wachstum der Pflanzen nicht annähernd in Bereiche von pasteurisierten Böden gebracht werden. Einige Arbeiten beschäftigen sich mit der Wirkung von glucosinolatbildenden *Brassica*-Arten (Brown & Morra, 1977). Die Brassica spp. wurden sowohl in Form von Raps ausgesät (Biofumigation) als auch in Form von Pressrückständen (Brassica seed meal) in den Boden eingebracht.

Das Einbringen von Pressrückständen brachte meist bessere Erfolge als eine Vorkultur. Das Wachstum in Böden mit 0,1% zugegebenem seed meal war annähernd gleich gut wie bei pasteurisierten Böden (Mazzola et al., 2002). In höheren Konzentrationen (bis zu 2%) kann die Zugabe der Pressrückstände

Abb. 6: Brassica napus (Raps).

auch phytotoxisch wirken und die Bäume sogar zum Absterben bringen (Mazzola et al., 2001). Ein großer Vorteil des Brassica seed meals ist, dass Abfallprodukte aus der Öl- und Senfproduktion verwendet werden, die relativ leicht verfügbar sein sollten. Mazzola (pers. Mitteilung) empfiehlt eine Kombination aus Raps (Brassica napus) und Braunem Senf (Brassica juncea), da beide Arten unterschiedlich auf die Mikroflora im Boden wirken. Interessant dabei ist, dass der Glucosinolat-Gehalt im Raps nicht ausschlaggebend für die Wirkung ist. Es scheinen also andere Mechanismen für die Krankheitsbekämpfung verantwortlich zu sein (Mazzola et al., 2001).

Abb. 7: Brassica juncea (Brauner Senf).

B. napus wirkt hemmend auf Rhizoctonia, Phytophthora und Pythium, B. juncea dagegen auf Pratylenchus und Cylindrocarpon. Daher wird derzeit in den USA eine Kombination dieser beiden Arten in der Praxis ausprobiert.

Die Wirksamkeit der Biofumigation beruht darauf, dass Brassica-Arten in ihren Zellen Glucosinolate bilden, die in den Vakuolen gespeichert werden. Außerdem bilden sie ein Enzym mit dem Namen Myrosinase, welches bei Zerstörung der Zellen mit den Glucosinolaten in Kontakt kommt und diese in Isothiocyanat umwandelt.

Isothiocyanat ist nicht nur für die Schärfe der meisten Brassica-Gewächse verantwortlich, sondern auch biologisch sehr reaktiv. Sie haben vielfältige Wirkungen gegen bodenbürtige Schadeerreger wie Pilze, Bakterien, aber auch gegen Nematoden und Unkrautsamen. Zusätzlich fördern sie das Wachstum von antagonistischen Mikroorganismen wie z.B. Trichoderma-Arten (Aldenhoff, 2007).

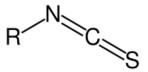


Abb. 8: Isothiocyanat.

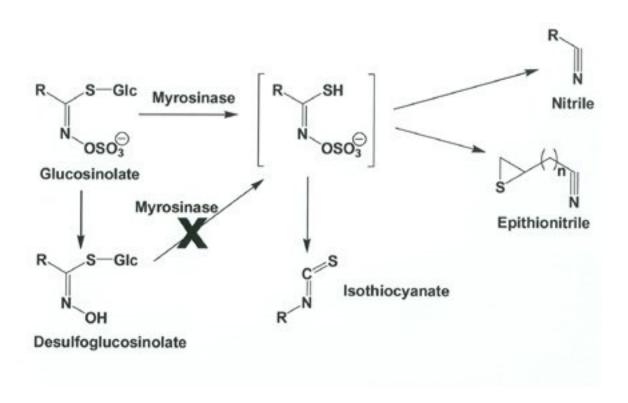


Abb. 9: Die Bildung von Isothiocyanat aus Glucosinolaten durch das Enzym Myrosinase.

Ein weiterer "biologischer" Ansatz zur Reduktion der Nachbaukrankheiten liegt in der Technik, die schädlichen Substanzen, die von den Pathogenen gebildet werden, zu binden. Eine solche schädliche Substanz soll laut Kümmeler (1981) Ethylen sein. Wirkung zeigen Aktivkohle, Komposte und andere organische Substanzen, die zur Bindung von Ethylen im Boden geeignet sein sollen (Gur et al., 1998).

Abb. 10: Aktivkohle.

Einige Hinweise gehen in die Richtung, dass eine biologische Bodenentseuchung effektiver in der Reduktion der Symptome der Apple Replant Disease ist als eine chemische Bekämpfung. Da die chemische Bekämpfung meist sehr unspezifisch auf alle Mikroorganismen im Boden wirkt, muss sich erst die Mikroflora wieder erholen und aufbauen.

So kann eine hohe Zahl an Pilzen im Boden bodenbürtige Pathogene, die Wurzelfäulen auslösen, unterdrücken (Manici et al., 2003). Die Pflanze bleibt insgesamt viel gesünder und widerstandsfähiger, wenn die Mykorrhizza-Flora erhalten bleibt.

1.3 Bedeutung von Nachbauproblemen in der Steiermark

Aufgrund der bestehenden Struktur der Obstbaubetriebe in der Steiermark wird das Problem der Bodenmüdigkeit und der Nachbaukrankheiten künftig immer stärker in den Vordergrund treten. Der steirische Apfelanbau hat bereits mehrere Jahrzehnte Tradition. Beinahe 30 Jahre wird der Apfel mit Hagelnetzen vor unvorhersehbaren Witterungseinflüssen geschützt. Da die bestehenden Gerüste in der Anschaffung relativ teuer sind, werden sie über mehrere Anbaugenerationen hinweg genützt. So gibt es in der Steiermark mehrere Anlagen, in denen bereits in derselben Reihe die vierte Generation Apfelbäume steht. In einigen Anlagen bemerken die Landwirte bereits, dass das Wachstum und in Folge auch der Ertrag der nachgepflanzten Apfelbäume nicht mehr den Anforderungen entspricht. Die Ursache wird allerdings nicht weiter ergründet, zu leicht gibt man dem Pflanzmaterial, der ungünstigen Lage oder den fehlenden Nährstoffen die Schuld. Das Problem scheint auch nicht allzu dringlich, der Baum stirbt ja nicht schlagartig aber oder ist von klar nachvollziehbaren Symptomen betroffen, er wächst nur einfach nicht mehr so wie früher.

Die Frage ist, ob es sich dabei nicht um Symptome der Nachbaukrankheit handeln könnte. Erste Verdachtsmomente bestehen also.

Es stehen in Österreich keine chemischen Produkte zur Bodenentseuchung im Obstbau zur Verfügung. Die gesetzlichen Vorlagen werden immer strikter, sodass weitere Zulassungen sehr unwahrscheinlich sind. Der steigende Bedarf von biologisch wirtschaftenden Betrieben fordert weiter nach Lösungen abseits der herkömmlichen Bodenentseuchungstechniken.

2 Material und Methoden

2.1 Bestimmung der Pathogene in den Bodenproben

Die Bodenproben, die in den Jahren 2013 und 2014 aus dem neu angelegten Freilandversuch (WP 4 Task 1) entnommen und für die Topfversuche verwendet wurden, sind mit PCR am Agroscope in Wädenswil (Schweiz) auf das Vorhandensein von potentiell pathogenen Mikroorganismen untersucht worden. Bei der PCR handelt es sich um eine rein qualitative Methode, die ausgewiesenen Prozentzahlen geben an, in wieviel Prozent der 5 untersuchten Replikate DNA der Pathogene nachweisbar war.

2.2 Genereller Versuchsaufbau der Topfversuche

Versuche zur Nachbauproblematik beim Apfel wurden mit verschiedenen Komposten und biologischen Produkten in den Jahren 2012-2014 durchgeführt. Im Zuge des BIO INCROP Projekts wurden drei Workpackages (WP 2, WP 3 und WP 4) in der Landwirtschaftlichen Versuchsstation für Obst- und Weinbau Haidegg des Landes Steiermark in Graz bearbeitet. WP 2 befasst sich mit dem Zusatz von Komposten, WP 3 mit kommerziell erhältlichen biologischen Präparaten zur Bekämpfung der ARD. Das Workpackage 4 beinhaltet die Anwendung von Gegenmaßnahmen vor einer Pflanzung in einem Freilandversuch (Task 1) sowie die Weiterführung von bereits bestehenden Freilandversuchen (Task 2).

2.3 WP 2, Task 1 und WP 3, Task 1

WP 2: Suche nach innovativen agronomischen Maßnahmen zur natürlichen Unterdrückung schädlicher bodenbürtiger Mikroorganismen in biologischen Obstanlagen.

Task 1: Selektion von Komposten und organischen Zusätzen, die eine Reduktion der Nachbaukrankheit durch Erhöhung der mikrobiellen Diversität und Biomasse im Boden bewirken.

WP 3: Prüfung von verfügbaren "low input"-Substanzen zur Bekämpfung der Nachbaukrankheit.

Task 1: Evaluierung von biologisch aktiven Produkten und Stämmen zur biologischen Bekämpfung der Nachbaukrankheit.

Zur Evaluierung von Komposten und biologischen Präparaten, die einer Wuchsminderung durch die ARD entgegenwirken sollen, wurden Klone der Unterlage M 9 in Töpfe gepflanzt und die Auswirkung von wachstumsfördernden Zusätzen getestet. Für die Versuche verwendete man Kunststofftöpfe mit einem Volumen von 2 Litern und einer Fläche von 100 cm² (10x10 cm). Jede Variante besteht aus 24 Unterlagen (3 Wiederholungen zu je 8 Replikaten) die gleich behandelt wurden. Eine unbehandelte Variante, die auf Nachbauböden ohne Zusätze und ohne Kompost gepflanzt wurde, diente als

Kontrollgruppe.

Die Versuche im Jahr 2012
verstehen sich als erste Evaluierung
von potenziellen
Pflanzenstärkungsmitteln und Bioagents, die Nachbauprobleme
beheben können. Insgesamt
wurden 15 biologische
Pflanzenhilfsstoffe getestet
(Tabelle 1).

Abbildung 11: Das Gewächshaus in Haidegg, Ragnitzstrasse 193, 8047 Graz. Nördliche Breite: 47,077°. östliche Länge: 15,500°.

In den Folgejahren 2013 und 2014 wurden Präparate und Komposte, die im Vorjahr eine positive Wirkung erzielten, auf die gleiche Weise erneut untersucht. Die verwendeten Präparate wurden mit den beteiligten Projektpartnern besprochen. Das Gewächshaus, mit den Maßen 18 x 8 Metern, steht auf dem Versuchsgelände der Versuchsstation für Obst- und Weinbau Haidegg des Landes Steiermark in Graz (Abbildung 11). Durch die Ost-West Ausrichtung herrschten gute Lichtverhältnisse. Eine automatisch gesteuerte Belüftung verhinderte zu hohe Temperaturen und sorgte für ein gleichmäßiges Klima im Gewächshaus. Auf eine zusätzliche Düngung der Unterlagen wurde verzichtet. Um eine höchst mögliche Homogenität zwischen den Unterlagen zu erreichen, selektierte man sie anhand ihres Stammdurchmessers (6-8 mm). Genetisch waren die Unterlagen völlig ident. Sie wurden alle in derselben Baumschule erzogen. Um das Wurzelwachstum anzuregen, wurden die Wurzelspitzen direkt vor der Pflanzung angeschnitten. Ein Eingraben der Töpfe in den Untergrund verhinderte ein zu schnelles Austrocknen der Unterlagen und bewirkte eine gleichmäßige Feuchtigkeitsverteilung zwischen den Töpfen (Abbildung 12).

Abbildung 12: Frisch gepflanzte M9 Unterlagen, am 04.05.2012. Die Töpfe wurden in die Erde eingegraben.

Die biologischen Produkte wurden für jede Pflanze, den Mengenangaben der Hersteller entsprechend, auf einer Analysewaage abgewogen und anschließend appliziert. Auf die, vom Hersteller vorgeschriebenen Lagerbedingung der biologischen Präparate, wurde geachtet. Nach den Pflanzungen wurden die Unterlagen auf ca. 30 cm Länge gekürzt, und, bis auf die obersten drei Knospen, alle Augen entfernt (Abbildung 13). Die Energie, die den Pflanzen zur Verfügung

stand, konzentrierte sich somit nur auf jene Triebe, die im Zuge der Bonitur gemessen wurden. Unter den Töpfen wurde ein Unkrautvlies ausgelegt, um ein Durchwurzeln in den Untergrund zu unterbinden und einen Nährstoffaustausch mit Substrat außerhalb des Topfes zu verhindern.

Abbildung 13: Die Unterlagen wurden auf eine Länge von ca. 30 cm gekürzt. Sobald Knospen sichtbar waren, wurden diese entfernt, sodass 3 Triebe übrig blieben.

Damit das Wachstum der Unterlagen nicht durch Konkurrenz beeinträchtigt worden wäre, war ein regelmäßiges Unkrautentfernen notwendig. Gegen Mehltau wurde mehrmals das Präparat Topas (Penconazol) sowie Netzschwefel angewendet. Um einen Blattlausbefall zu verhindern wurde Calypso (Thiacloprid) mit einer Rückenspritze appliziert. Bis zu den ersten Pflanzungen wurden die Komposte und der Nachbauböden in einem Kühlraum bei circa 10°C gelagert. Dadurch ergab sich eine gute Feuchtigkeitsverteilung im Boden und den Komposten. Jeder einzelnen Unterlage wurde eine eindeutige Identifikationsnummer zugeteilt.

Ermittelte Parameter waren die Länge [cm] und das Trockengewicht der Triebe [g]. Knospen ohne Triebwachstum, die eine Blattrosette ausbildeten, wurden als 5 mm lange Triebe gewertet. Die Triebbonitur wurde jedes Jahr zweimal durchgeführt. Einen Monat vor der Auswertung wurde von jeder Unterlage die Länge der Jungtriebe mit einem handelsüblichen Lineal gemessen. Erst nach ersichtlichem Wachstumsende der Langtriebe bzw. mindestens 10 Wochen Vegetationszeit wurde die 2. Triebbonitur durchgeführt. Im Zuge der zweiten Triebbonitur wurden die Unterlagen aus den Töpfen entnommen. Die Triebe wurden zerkleinert und in Aluminiumtassen für 24 Stunden bei 105°C in einem Trockenschrank getrocknet. Im Anschluss wurde die Trockenmasse mit einer Analysewaage bestimmt.

Tabelle 1: Zusammenfassung aller verwendeten Pflanzenhilfsstoffe und deren Zusammensetzung. Es wird angegeben, in welchem Versuchsjahr die Präparate verwendet wurden.

Name	Inhaltsstoffe	2012	2013	2014
Greenfit Koba	k. A.	JA		
SYMBIVIT	Glomus spp.	JA		
Trichostar	Trichoderma harzianum T58	JA		
RhizoVital 42	Bacillus amyloliquefaciens	JA		
FZB24 WG	Bacillus amyloliquefaciens ssp. plantarum	JA		
Promot	Trichoderma harzianum, Trichoderma koningii	JA		
Ekoprop nemax	Trichoderma, Bacillus subtilis, Glomus spp., Streptomyces, various fungi	JA	JA	JA
Micosat F	k. A.	JA	JA	JA
Mycostop Biofungicide	Streptomyces griseovirides strain K61	JA	JA	JA
Aegis microgranulo	Verschiedene Mycorrhizapilze	JA		
Tifi	Trichoderma atroviride	JA	JA	
Condor	Mycorrhizapilze + Trichoderma	JA		
Ozor	Mycorrhizapilze	JA		
Bio-Microl	Komposttee/ aktivierter Regenwurmhumus	JA		
Mykonor	Glomus fasciculatum Glomus intraradices Glomus mosseae		JA	

2.4 Versuchsanordnung im Jahr 2012

Im Jahr 2012 wurden die Arbeiten der Workpackages 2 und 3 durchgeführt. Ermittelte Parameter waren die Länge der Langtriebe [cm], das Trockengewicht der Triebe [g] und das visuell bewertete Wurzelwachstum [Wertung von 1-4 Punkten]. Die Triebbonitur wurde zweimal durchgeführt. Zwischen 4. und 7. Juni wurde von jeder Unterlage die Länge der Jungtriebe mit einem handelsüblichen Lineal gemessen. Die zweite Triebbonitur fand zwischen 24. und 27. Juni statt (Abbildung 14) und wurde nach dem Schema der ersten Triebbonitur durchgeführt. Die Wurzeln wurden fotografiert und visuell in Klassen von 1 (= schlechtes Wurzelwachstum) bis 4 (= gutes Wurzelwachstum) eingeordnet (Abb. 15). Da eine rein visuelle Beurteilung von Fotos nicht praktikabel war, werden die Ergebnisse nicht dargestellt. Diese Art der Bonitur wurde für weitere Versuche nicht weiter verwendet. Der Nachbauboden für die Versuche im Jahr 2012 stammt aus einer Versuchsanlage der Versuchsstation für Obst- und Weinbau Haidegg. Es wurden pro Variante 3 Wiederholungen zu je 8 Unterlagen gepflanzt. Die Wasserzufuhr wurde manuell durchgeführt.



Abbildung 14: Zeitliche Abfolge des Nachbauversuchs im Jahr 2012. Im Zeitraum von 1. – 4. Mai fanden alle Pflanzungen statt. Die Unterlagen befanden sich mind. 85 Tage in der Vegetationsphase. Zwischen 24. und 27. Juli fand die letzte Bonitur statt.

2.4.1 WP 2 – Task 1: Komposte und organische Zusätze

WP 2: Suche nach innovativen agronomischen Maßnahmen zur natürlichen Unterdrückung schädlicher bodenbürtiger Mikroorganismen in biologischen Obstanlagen.

Task 1: Selektion von Komposten und organischen Zusätzen, die eine Reduktion der Nachbaukrankheit durch Erhöhung der mikrobiellen Diversität und Biomasse im Boden bewirken.

Insgesamt wurden 7 Varianten von Kompost in die Versuchsreihe aufgenommen. Physikalische und chemische Eigenschaften der Komposte wurden vor ihrer Verwendung analysiert (Tabelle 2). Für die Komposte wurde die Menge von 25g pro Topf festgelegt. Diese wurden zuvor eingewogen und anschließend im Pflanzloch verteilt.

Nachstehende Tabelle zeigt die im Topfversuch 2012 eingesetzten Komposte und ihre Nährstoffzusammensetzung, sowie Trockenmasse und pH Werte:

Tabelle 2: Verwendete Komposte im Jahr 2012 und deren chemische Zusammensetzung.

No.	Type	Anzahl	Dry mass (g/100 g)	рН	N total (g/kg)	Ammonium (g/kg)	Nitrate (g/kg)	P (g/kg)	K (g/kg)
WP 2/1	Sludge (Klärschlamm)	24	62,65	7,2	6,57	0,16	0,54	6,1	4,94
WP 2/2	Green manure (Grünschnitt)	24	60,36	7,3	7,29	0,01	0,27	3,48	5,29
WP 2/3	Urban waste (Bio-Abfall)	24	62,71	7,4	12,93	0,03	0,49	2,67	8,94
WP 2/4	Stable manure (+ green manure) Stallmist (+Grünschnitt)	24	40,29	7,5	6,51	0,01	0,24	1,76	8,75
WP 2/5	Fruit waste (+ green manure) Obstabfälle (+Grünschnitt)	24	52,78	7,4	9,57	0,01	0,47	3,82	6,52
WP 2/6	Rainworm humus (Regenwurm- humus)	24	66,05	7,9	11,07	0,01	0,4	2,69	14,63
WP 2/7	Terra preta	24	52,92	7,5	8,29	0,01	0,25	1,45	6,51

Für die Datenaufbereitung wurde Microsoft Excel [Microsoft Corp.] verwendet. Statistische Auswertungen und Berechnungen wurden von Frau Dr. Manici durchgeführt.

Abbildung 15: Gleich nachdem die Unterlagen aus der Erde entnommen wurden, fotografierte man diese für eine spätere Wurzelbonitur. Die Unterlagen wurden, je nach Ausprägung des Wurzelsystems, in Klassen von 1-4 (1 = schlechtes Wurzelwachstum, 4 = gutes Wurzelwachstum) eingeordnet. Diese rein visuelle und subjektive Art der Bonitur wurde als nicht praktikabel für den weiteren Versuchsablauf verworfen.

2.4.2 WP 3 - Task 1: Biologische Bodenverbesserer und Bodenhilfsstoffe

WP 3: Prüfung von verfügbaren "low input" - Substanzen zur Bekämpfung der Nachbaukrankheit.

Task 1: Evaluierung von biologisch aktiven Produkten und Stämmen zur biologischen Bekämpfung der Nachbaukrankheit.

Ein Komposttee und 13 biologische Produkte wurden auf ihr Potenzial, den Boden zu verbessern, getestet. Zur Minderung der ARD enthalten diese biologischen Produkte hohe Keimzahlen an Mikroorganismen (Bakterien und Pilze), die eine natürliche Suppressivität des Bodens bewirken sollen. Es wurden auch Produkte mit PGPR (Plant growth promoting Rhizobacteria) angewendet, die den allgemeinen Gesundheitszustand einer Pflanze verbessern sollen.

Insgesamt wurden für das Workpackage 3 im Jahr 2012 336 Unterlagen gepflanzt. 24 unbehandelte Unterlagen dienten als Kontrollgruppe.

Bio Microl (belebter Regenwurmhumus) wurde mit Nährsubstrat und Wasser versetzt und nach den Angaben des Herstellers für 24 Stunden belüftet und beheizt. Nach diesem Prozess soll der Tee einen hohen Anteil an Fulvonsäuren, Huminsäuren und Phytohormonen haben. Verwendet wurde nur der so entstandene Komoposttee. Die erste Anwendung aller biologischen Produkte zur Bodenverbesserung erfolgte direkt bei der Pflanzung, die zweite Anwendung nach vier Wochen. Den Unterlagen standen mehr als 85 Tage Wachstumsphase zur Verfügung (Abbildung 14).

Abbildung 16: In diesem Zylinder wurde der Regenwurmhumus für 24 Stunden belüftet. Der entstandene Tee wurde wie Gießwasser angewendet.

Tabelle 3: Die im Jahr 2012 verwendeten biologischen Produkte zur Bodenaufwertung aus dem WP 3. Stichprobenzahl, Aufwandmenge sowie Anzahl der Anwendungen werden dargestellt.

No.	Name	Anzahl	Application/pot	Number of applications
WP 3/01	Greenfit Koba	24	75 g	1
WP 3/02	SYMBIVIT	24	20 g	1
WP 3/03	Trichostar	24	1 ml/l solved; 10 ml/pot	2
WP 3/04	RhizoVital 42	24	1 ml/l solved; 10 ml/pot	2
WP 3/05	FZB24 WG	24	1 ml/l solved; 10 ml/pot	2
WP 3/06	Promot	24	1 g/l solved; 10 ml/pot	2
WP 3/06	Ekoprop nemax	24	1,5 g/l solved; 10 ml/pot	2
WP 3/08	Micosat F	24	50 g	1
WP 3/9	Mycostop Biofungicide	24	2 g/l solved; 10 ml/pot	2
WP 3/10	Aegis microgranulo	24	8 g	1
WP 3/11	Tifi	24	2 g	1
WP 3/12	Condor	24	1 g	1
WP 3/13	Ozor	24	6 g/l solved; 10 ml/pot	2
WP 3/14	Bio-Microl	24	250 ml	1

2.5 Versuchsanordnung im Jahr 2013

Im Zuge der Evaluierung biologischer Bodenverbesserer zur Bekämpfung der Nachbaukrankheit beim Apfel wurden im Jahr 2013 die Workpackages 2 und 3 kombiniert.

2.5.1 WP 2 – Task 1 in Kombination mit WP 3 Task 1: Komposte und organische Zusätze in Kombination mit biologischen Bodenverbesserern

Bei vorhergehenden Versuchen an der DLR Rheinpfalz erwies sich kompostiertes biologisches Pilzsubstrat aus der Champignonanzucht, dem Boden beigemengt, als effektive Maßnahme gegen die ARD. Anhand dieser Tatsache wurde ein kompostiertes biologisches Pilzsubstrat in die Versuchsreihe 2013 aufgenommen. Im Wesentlichen handelt es sich bei diesem Kompost um das kompostierte Abfallprodukt einer biologischen Pilzzucht. Ein hoher Anteil an Myzel- und Hyphenreste dient dabei als Nährsubstrat für Mikroorganismen, die auf phytopathogenen Pilzen parasitieren. Eine Repression der ARD wird besonders in Kombination mit den biologischen Bodenverbesserern erwartet. Zur Prüfung dieser Hypothese wurde eine Variante mit Pilzkompost ohne biologische Präparate angelegt. Die biologischen Bodenverbesserer wurden anhand der Ergebnisse vom Vorjahr ausgewählt. Das Produkt Mykonor fand zum ersten Mal in dieser Versuchsreihe Anwendung, bekannt ist es aus dem Gartenbau.

Der Nachbauboden stammte aus jener Anlage, in der auch der Freilandversuch aus WP 4 angelegt wurde. Für jede Variante waren 3 Wiederholungen zu je 8 Unterlagen vorgesehen, also 24 Unterlagen pro Variante. Eine sterile Kontrolle wurde zusätzlich angelegt, um die Ausprägung der Nachbaukrankheit dieses Bodens abschätzen zu können. Beim Pflanzmaterial handelte es sich, wie bereits im Vorjahr, um Klone der Unterlage M9. Die Wiederholungen wurden randomisiert aufgestellt. Neben der Trockenmasse und dem Wachstum der Triebe wurde zusätzlich die Wurzeltrockenmasse bestimmt. Die Sterilisation der Erde und des Komposts wurde mit dem Bodendämpfer "Sterilo 7K" (7KW) der Firma Harter-Elektronik durchgeführt (Abbildung 17). Bei einer Maximaltemperatur von 90°C wurde die Erde für fünf Stunden gedämpft. Ein Rohrleitsystem sorgt bei diesem Gerät für eine gleichmäßige Hitzeverteilung.

Tabelle 4: Versuchsaufbau und Varianten aus der Kombination von WP2 und WP3 im Jahr 2013

Variante	Anzahl Applikationen	Präparat Aufwand pro Topf	Kompost Aufwand pro topf
Kontrolle	-	-	-
Sterile Kontrolle	1	-	-
Kompostiertes Pilzsubstrat (steril)	-	-	50 g
Kompostiertes Pilzsubstrat	-	-	50 g
Kompostiertes Pilzsubstrat + Micosat	1	50 g	50 g
Kompostiertes Pilzsubstrat + Mycostop	2	2 g/l gelöst; 10 ml/Topf	50 g
Kompostiertes Pilzsubstrat + E. Nemax	2	1,5 g/l gelöst; 10 ml/ Topf	50 g
Kompostiertes Pilzsubstrat + Tifi	1	2g/ Topf	50 g
Kompostiertes Pilzsubstrat + Mykonor	2	30g/l gelöst; 10ml/ Topf	50 g
Mycostop	2	2 g/l gelöst; 10 ml/ Topf	-
E. Nemax	2	1,5 g/l gelöst; 10 ml/ Topf	-
Tifi	1	2g/ Topf	-
Mykonor	2	30g/l gelöst; 10ml/ Topf	-

Tabelle 5: Chemische und biologische Parameter des kompostierten Pilzsubstrates

Nutrient (mg/kg)	Champost	Champost sterile
Р	>300	>300
K	>600	>600
Mg	666	685
В	5,3	5,5
Cu	7,9	8,1
Zn	58,7	56,7
Mn	144	167
Fe	515	528
Humus	8,46%	8,46%
Ca	43,0	42,4
рН	7,6	7,7

Um ein Bild über die Gesundheit der Wurzel zu erhalten wurde deren Trockenmasse ermittelt. Damit die Wurzeln ohne Beschädigung vom Substrat getrennt werden konnten, musste der gesamte Topfinhalt in Wasser eingeweicht werden. Die Erde löste sich danach sehr gut von der Wurzelmasse. Zur Trocknung in den Aluminiumtassen wurden jeweils drei Unterlagen zusammengefasst. Bei einer Temperatur von 105°C und einer Dauer von 24 Stunden fand die Trocknung der Wurzelmasse statt. Gleich im Anschluss wurde das Trockengewicht bestimmt. Für die Datenaufbereitung wurde Microsoft Excel [Microsoft Corp.] verwendet.

Statistische Auswertungen und grafische Darstellungen wurden mit XLSTAT durchgeführt. Für die Varianzanalyse wurde der statistische Test nach Kruskal & Wallis verwendet. Für die Bildung homogener Untergruppen wurde Dunn's Post Hoc Test verwendet. Für multiple Vergleiche wurde eine Bonferrroni-Korrektur durchgeführt.

Abbildung 17: Der Bodendämpfer Sterilo 7K. Nach 5-stündigem Dämpfen des kompostierten Pilzsubstrats bei 90°C geöffnet.

2.6 Versuchsanordnung im Jahr 2014

2.6.1 WP 2 – Task 1 in Kombination mit WP 3 Task 1: Komposte und organische Zusätze in Kombination mit biologischen Bodenverbesserern

Im Jahr 2014 wurden die Topfversuche nach gleichem Schema wie im Jahr 2013 durchgeführt. Auf eine automatisierte Bewässerung wurde verzichtet. Da im Jahr 2014 kein kompostiertes Pilzsubstrat mehr erhältlich war, musste man auf unkompostiertes Substrat ausweichen (Abbildung 18). Es wurden zwei verschiedene Substrate aus der Bio-Pilzzucht verglichen. Zum einen das im Vorjahr verwendete Substrat (unkompostiert) aus Sägespänen und Bio-Getreide (Sägespänesubstrat), zum anderen ein ebenfalls unkompostiertes biologisches Pilzsubstrat aus Stroh (Strohsubstrat).

Abbildung 18: Links: Unkompostiertes Bio-Pilzsubstrat aus Stroh; rechtes Bild: Unkompostiertes Bio-Pilzsubstrat aus Sägespänen und Getreideresten.

Die Auswahl der Präparate wurde weiter eingeschränkt und an den Freilandversuch, der im Frühjahr 2013 gepflanzt wurde, angepasst. Es wurden die Präparate Mycostop, Micosat und Ekoprop Nemax verwendet. Im Wesentlichen wurden die biologischen Bodenverbesserer einzeln und mit den beiden verschiedenen Bio-Pilzsubstraten kombiniert angewendet. Der Nachbauboden stammte wieder aus jenem Betrieb, in dem der Freilandversuch angelegt wurde. Diese wurde vor Gebrauch gesiebt. Neben der unbehandelten Kontrolle wurde auch eine sterile Kontrolle gepflanzt. Da der Bodendämpfer "Sterilo 7K" bei zu geringen Mengen zu überhitzen droht, wurde die Bodensterilisierung in einer Mikrowelle durchgeführt. Über eine Dauer von 40 Minuten wurde eine Tüte mit Erde (ca. 3 I) in einer Mikrowelle erhitzt. Bei einer Leistung von 800 W erreichte man nach 10 Minuten eine Temperatur von ca. 97°C. Nach weiteren 30 Minuten wurde der Beutel aus der Mikrowelle genommen.

Die erhobenen Daten im Jahr 2014 waren die Trieblänge [cm] sowie die Trockenmasse [g] von den Trieben und Wurzeln. Zusätzlich wurde das Frischgewicht der Triebe ermittelt. Zum Trocknen (24 Stunden bei 105°C) wurden die Triebe von 4 Unterlagen in einer Aluminiumtasse zusammengefasst. Für die Ermittlung der Wurzeltrockenmasse wurden die Wurzeln von 8 Unterlagen zusammengefasst.

Für die Datenaufbereitung wurde Microsoft Excel [Microsoft Corp.] verwendet.
Statistische Auswertungen und grafische Darstellungen wurden mit XLSTAT durchgeführt. Für die Varianzanalyse wurde der statistische Test nach Kruskal & Wallis verwendet. Für die Bildung homogener Untergruppen wurde Dunn's Post Hoc Test

verwendet. Für multiple Vergleiche wurde eine Bonferrroni-Korrektur durchgeführt.

Abbildung 19: Gezeigt wird die Variante aus Bio-Pilzsubstrat mit Micosat. Vor dem Einsetzen der Unterlage wurde der Inhalt vermischt.

Tabelle 6: Versuchsvarianten aus dem Jahr 2014. Stichprobenzahl, Anzahl an Anwendungen sowie die Aufwandsmenge sind gegeben

Variante	Anzahl Applikationen	Präparat Aufwand pro Topf	Kompost Aufwand pro topf
Kontrolle	-	-	
Sterile Kontrolle	-	-	-
Sagespänesubstrat	-	-	50 g
Strohsubstrat	-	-	50 g
E. Nemax	1	1,5 g/l gelöst; 10 ml/ Topf	-
Mycostop	2	2 g/l gelöst; 10 ml/ Topf	-
Micosat	1	50g/ Topf	-
Sagespänesubstrat + Micosat	1	50 g	50 g
Sagespänesubstrat + Mycostop	2	2 g/l gelöst; 10 ml/Topf	50 g
Sagespänesubstrat + Ekoprop Nemax	2	1,5 g/l gelöst; 10 ml/ Topf	50 g
Strohsubstrat + Micosat	1	50 g	50 g
Strohsubstrat + Mycostop	2	2 g/l gelöst; 10 ml/Topf	50 g
Strohsubstrat + E. Nemax	2	1,5 g/l gelöst; 10 ml/ Topf	50 g

Tabelle 7: Chemische und biologische Parameter der verwendeten Pilzsubstrate im Topfversuch 2014 (gemessene Werte von der Uni Innsbruck)

Sample	% DM	% C	% N	pH (pot)	EC [mS/cm]	% SOM	OM [mg/g]	C org	Cmic/Corg	BR [µg gTS-1 h-1]	SIR µg Cmic * g DM-1
Wooden											
substrate	36,90	45,70	1,32	7,23	2,46	93,33	933,27	542,60	5,04	26,52	2734,00
	34,07	45,50	1,20	6,56	2,70	93,37	933,72	542,86	4,55	22,68	2468,00
	36,52	45,10	1,47	7,56	3,55	92,96	929,65	540,49	4,06	22,62	2192,00
	36,62	45,40	1,40	7,08	2,45	94,04	940,40	546,74			
	36,03	45,43	1,35	7,11	2,79	93,43	934,26	543,17	4,55	23,94	2464,67
Straw											
substrate	50,18	43,10	0,93	5,05	2,47	87,14	871,43	506,64	8,69	59,07	4404,00
	50,98	42,90	0,69	5,14	2,50	86,67	866,73	503,91	9,23	58,90	4650,00
	55,98	42,60	0,89	5,15	2,53	88,98	889,80	517,33	8,95	57,70	4628,00
	52,40	43,20	0,89	4,98	2,55						
	52,39	42,95	0,85	5,08	2,51	87,60	875,98	509,29	8,96	58,56	4560,67

2.7 Versuchsstandort und allgemeiner Versuchsaufbau für WP 4, Task 1

WP 4: Innovative Bodenbearbeitungsmaßnahmen in biologischen Obstplantagen um die Gesundheit des Bodens zu gewährleisten

Task 2: Bodenbearbeitung und Behandlung vor der Pflanzung um die ARD zu minimieren.

Im Zuge des Workpackage 4 wurde im Jahr 2013 ein Freilandversuch angelegt. Im Wesentlichen wurden biologischer Pilzkompost und biologische Bodenverbesserer bei der Pflanzung eingesetzt. Verwendet wurden jene Produkte, die sich auch in den Gewächshausversuchen aus 2012 als nützlich erwiesen, oder in den Versuchen der Projektpartner gute Ergebnisse erzielten.

Die Versuchsanlage befindet sich in der Nähe von Weiz, NO von Graz. Dabei handelt es sich um einen Bio-Betrieb, in dem bereits die vierte Generation Apfel steht. Gepflanzt wurde die Sorte Gala Brookfield auf M9 Unterlagen. Sowohl mit der Unterlage als auch mit der Sorte hat man im Anbaugebiet Steiermark viel Erfahrung. Sie werden auch in Zukunft hinreichende Verwendung finden.

Abbildung 20: Randomisierte Anordnung der 4 Wiederholungen mit jeweils 10 Bäumen pro Versuchsvariante. (nach Lochow und Schuster)

Insgesamt wurden 240 Bäume (6 verschiedene Varianten mit 4 Wiederholungen zu je 10 Bäumen) gepflanzt. Die Anordnung der Wiederholungseinheiten wurde nach Lochow & Schuster durchgeführt (Abbildung 20). Wie bei der normalen Spindelpflanzung üblich beträgt der Baumabstand einen Meter. Eine Wetterschutzeinrichtung (schwarzes Hagelnetz) war bereits vorhanden.

Tabelle 8: Varianten des Freilandversuchs. Stichprobenzahl und Aufwandsmenge an Kompost und Präparat werden dargestellt.

Nr	Variante		Biologisches Präparat	Champignon- Kompost	Stichprobenzahl
1	Kontrolle		-	-	40
2	Gedämpfter Bio-Pilz		-	3I steril/Baum	40
3	Bio-Pilzkompost unbehandelt		-	3I/Baum	40
4	Bio-Pilzkompost Micosat F	+	50 g/Baum	3I/Baum	40
5	Bio-Pilzkompost Mycostop	+	0,5 g/ 10 l gelöst; 1 l/ Baum	3I/Baum	40
6	Bio-Pilzkompost Ekoprop nemax	+	2 g/ 10 l gelöst; 1 l/ Baum	3I/Baum	40

Die bei der Pflanzung ausgebrachte Kompostmenge wurde auf 3 I pro Baum festgesetzt. Sterilisiert wurde der Kompost mit dem Bodendämpfer "Sterilo 7K" der Firma Harter-Elektronik (Abbildung 17). Als einziges biologisches Produkt, das nicht flüssig anzuwenden war, mussten 50g Micosat pro Baum direkt in das Pflanzloch zugegeben werden. Die Produkte Ekoprop nemax und Mycostop wurden vor ihrer Anwendung in Wasser gelöst und in definierter Menge (1 Liter pro Baum) ausgebracht. Nach einer Wartezeit von vier Wochen wurden die Varianten mit Ekoprop Nemax und Mycostop, laut Herstellerempfehlung, ein zweites Mal appliziert. Erhobene Daten waren die Trieblängen [cm] der drei höchsten Triebe sowie der Stammdurchmesser eines jeden Baumes (Abbildung 21).

Abbildung 21: Links: Die Versuchsanlage in Hafning (Bezirk Weiz) nach der Pflanzung im Zuge von WP 4; rechts: Triebbonitur im Freiland im Herbst 2013.

2.8 WP 4 – Task 2: Weiterführung von Freilandversuchen

WP 4: Innovative Kulturmaßnahmen zur Erhöhung der funktionellen Bodenbiologie in biologischen Obstkulturen in Mittelmeer- und gemäßigten Klimazonen Europas.

Task 2: Bodenmanagement und kombinierte Verfahren vor der Pflanzung zur Reduktion der Nachbaukrankheit beim Apfel im biologischen Anbau.

Im Jahr 2010 wurde von der Versuchsstation Obst- und Weinbau Haidegg ein Freilandversuch auf einem Obstbaubetrieb in der Oststeiermark angelegt, der die Wirkung von Kompostzusatz und von biologischen Bodenverbesserern gegen die Nachbaukrankheit beim Apfel zeigen soll. Dazu wurde eine Fläche auf dem Obstbaubetrieb gewählt, die bereits zum vierten Mal auf derselben Stelle mit Apfelbäumen bepflanzt werden soll. Als Sorte wurde ROHO 3615/Evelina® gewählt. Die Bäume wurden reihenweise behandelt. Pro Reihe stehen 120 Bäume, 30 Bäume (jeweils 10 Bäume im oberen, mittleren und unteren Teil der Anlage) wurden markiert und jährlich bonitiert. Zur Bestimmung des vegetativen Wachstums der Bäume wird der Stammdurchmesser der Bäume gemessen, sowie der Triebzuwachs des obersten Wipfeltriebes am Baum. Nachstehende Tabelle zeigt die Varianten, die im Freilandersuch untersucht werden sollen.

Tabelle 9: Varianten des Freilandversuchs aus WP 4 Task 2. Die eingesetzte Kompostmenge und

Applikationsmenge der biologischen Bodenverbesserer werden dargestellt.

No.	Name	Active	Application/plant hole
		ingredient/microorganisms	
1	Untreated Check		
2	Compost		
3	Trichostar	Trichoderma harzianum T58	100 ml/100 l, 1 l/hole
4	Compost + Trichostar +	Trichoderma harzianum T58	100 ml/100 l, 1 l/hole
	Symbivit	Glomus spp.	10 g/hole
5	Symbivit	Glomus spp.	10 g/hole
6	Compost + Symbivit	Glomus spp.	10 g/hole
7	Trichostar + Symbivit	Trichoderma harzianum T58	100 ml/100 l, 1 l/hole
		Glomus spp.	10 g/hole
8	Compost + Trichostar	Trichoderma harzianum T58	100 ml/100 l, 1 l/hole

3 Ergebnisse

3.1 PCR-Bestimmung der Bodenproben für die Topfversuche

Tabelle 10: Zusammensetzung der Pathogene bei der PCR-Bestimmung in den verwendeten Böden aus den Topfversuchen 2013 und 2014 vor und nach der jeweiligen Desinfektionsmaßnahme (bestimmte Werte von Agroscope Wädenswil)

Soil	Year	Cylindr.	Pythium	Phytoph.	Rhizoct.
Soil Austria	2013	100%	40%	0%	0%
	2014	100%	80%	20%	40%
Soil Austria sterile steam sterilized	2013	80%	0%	0%	0%
microwave sterilized	2014	0%	0%	0%	0%

3.2 Topfversuche 2012 aus WP2

3.2.1 Triebzuwachs

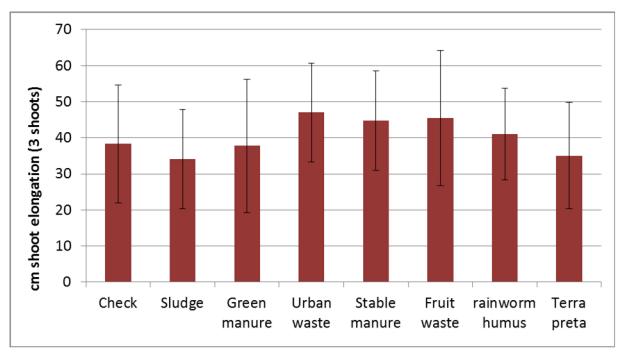


Abbildung 22: Trieblängenzuwachs der drei Triebe in den untersuchten Varianten.

3.2.2 Trockengewicht der Triebe

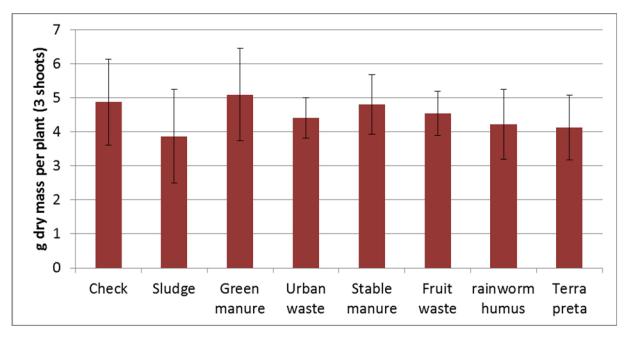


Abbildung 23: Trockengewicht der drei zugewachsenen Triebe nach dem Versuch.

Tabelle 11: Auswertung der untersuchten Parameter in WP 2.

Туре	Shoot	Std.	Dry weight	Std.	Root growth
	length (cm)	dev.	(g)	dev.	(1-4)
Check	38,3	16,3	4,88	1,3	2,63
Sludge	34,0	10,6	3,87	1,4	2,62
Green manure	37,8	11,8	5,10	1,4	2,19
Urban waste	47,0	15,3	4,41	0,6	2,44
Stable manure	44,8	17,3	4,80	0,9	3,02
Fruit waste	45,5	13,6	4,54	0,7	2,71
rainworm humus	41,0	11,1	4,22	1,0	2,60
Terra preta	35,1	22,3	4,13	0,9	2,63

WP2 organic amendments

ANOVA

Analysis of Variance for shoot - Type III Sums of

Squares

oquai os						
Source	Sum of	Df	Mean	F-	P-	
	Squares		Square	Ratio	Value	
MAIN EFFECTS						
A:treatment	4064,24	7	580,605	2,57	0,0152	P<0.05
B:repl	94,5882	2	47,2941	0,21	0,811	ns
INTERACTIONS						
AB	4741,33	14	338,667	1,5	0,115	
RESIDUAL	37884,7	168	225,504			
TOTAL (CORRECTED)	46784,9	191				

All F-ratios are based on the residual mean square error.

Multiple Range Tests for shoot by treatment

Method: 95,0 percent LSD					
treatment	Count		LS	LS Sigma	Homogeneous Groups
			Mean		
Sludge		24	34,0458	3,06529	a
Terra preta		24	35,0625	3,06529	a
Green manure		24	37,7583	3,06529	ab
Check		24	38,325	3,06529	ab
Rainworm humus		24	40,9833	3,06529	abc
Stable manure		24	44,7958	3,06529	bc
Fruit waste		24	45,4917	3,06529	bc
Urban waste		24	47,0042	3,06529	С

3.3 Topfversuche 2012 aus WP3

3.3.1 Triebzuwachs

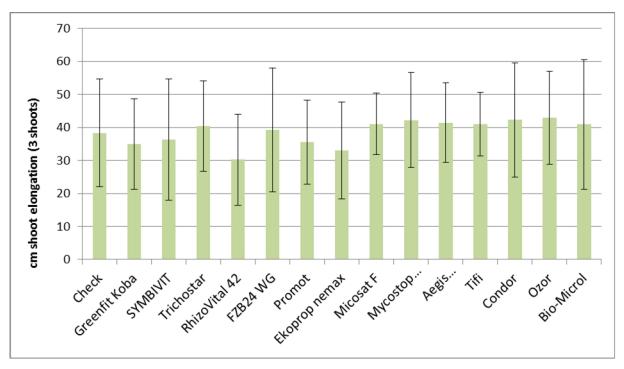


Abbildung 24: Trieblängenzuwachs der drei Triebe in den untersuchten Varianten.

3.3.2 Trockengewicht der Triebe

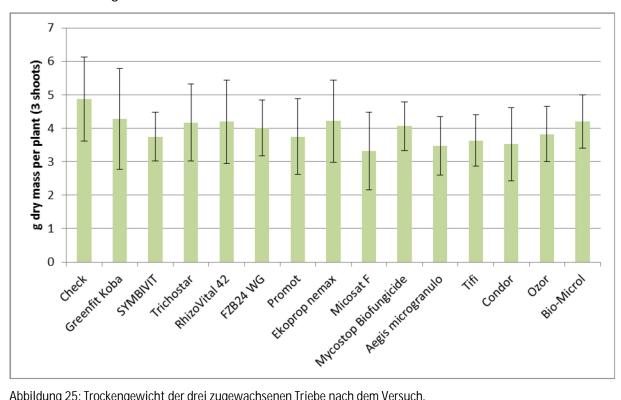


Abbildung 25: Trockengewicht der drei zugewachsenen Triebe nach dem Versuch.

Tabelle 12: Auswertung der untersuchten Parameter in WP 3.

Туре	Shoot	Std.	Dry	Std.	Root growth
	length	dev.	weight	dev.	(1-4)
	(cm)		(g)		
Check	38,3	16,3	4,88	1,3	2,63
Greenfit Koba	35,0	13,8	4,28	1,5	2,29
SYMBIVIT	36,3	18,4	3,74	0,7	1,98
Trichostar	40,4	13,7	4,17	1,2	2,21
RhizoVital 42	30,2	13,7	4,20	1,2	2,21
FZB24 WG	39,2	18,8	4,01	0,8	1,95
Promot	35,5	12,7	3,75	1,1	2,54
Ekoprop nemax	33,0	14,7	4,22	1,2	2,33
Micosat F	41,1	9,4	3,32	1,2	2,42
Mycostop Biofungicide	42,2	14,3	4,06	0,7	2,60
Aegis microgranulo	41,4	12,1	3,47	0,9	2,06
Tifi	41,0	9,6	3,63	0,8	2,40
Condor	42,3	17,3	3,53	1,1	2,63
Ozor	42,9	14,1	3,83	0,8	2,29
Bio-Microl	40,9	19,7	4,21	8,0	2,63

WP3- shoot

Α	N	1	1	Λ
А	N	()	v.	н

Analysis of Variance for shoot - Type III Sums of

Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P- Value	
MAIN EFFECTS			_			
A:TRatt	4871,02	14	347,93	1,54	0,0968	ns
B:repl	91,0621	2	45,531	0,2	0,818	ns
INTERACTIONS						
AB	4848,69	28	173,167	0,76	0,8016	
RESIDUAL	71359,5	315	226,538			
TOTAL (CORRECTED)	81170,2	359				

All F-ratios are based on the residual mean square error.

Mean separation test					
Method: 95,0 percent LSD					
TRatt	Count		LS	LS Sigma	Homogeneous Groups
			Mean		
RhizoVital		24	30,2292	3,07231	a
Ekoprop nemax		24	33,0208	3,07231	ab
Greenfit KOBA		24	34,9792	3,07231	abc
Promot		24	35,5167	3,07231	abc
Symbivit		24	36,3167	3,07231	abc
Check		24	38,325	3,07231	abc
FZB24		24	39,2	3,07231	bc
Trichostar		24	40,4083	3,07231	bc
Bio-Microl		24	40,9083	3,07231	bc
Tifi		24	41	3,07231	bc
Micosat F		24	41,075	3,07231	bc
Aegis microgranulo		24	41,4167	3,07231	bc
Mycostop		24	42,2458	3,07231	С
Condor		24	42,2667	3,07231	С
Ozor		24	42,8875	3,07231	С

3.4 Topfversuche 2013 aus WP2 und WP3

3.4.1 Triebzuwachs

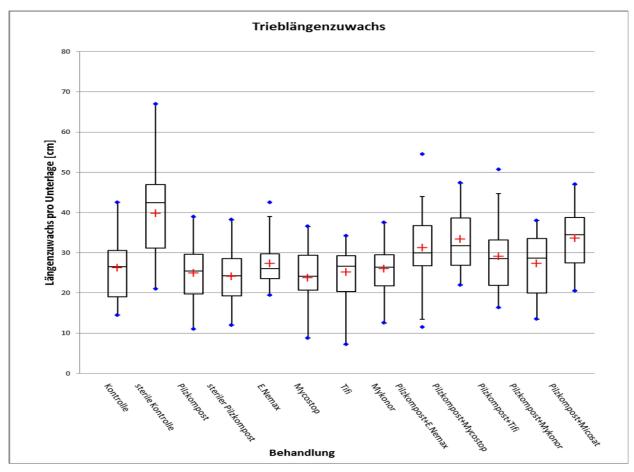


Abbildung 26: Trieblängenzuwachs in einem Boxplot dargestellt. Blaue Punkte: Minimum und Maximum; rote Kreuze: Mittelwert. Erstellt aus den Daten der Trieblängenmessung 2013.

Abbildung 27: Vergleich der Töpfe am 12. August 2013 kurz vor der Bonitur. Links: unbehandelte Kontrolle, rechts: dampfsterilisierter Kontrollboden

Tabelle 13: Multiple Paarvergleiche und homogene Untergruppen. Die Spalte "frequency" gibt die Stichprobenzahl wieder. Bonferroni korrigiertes Signifikanzniveau: 0,0006.

		Sum of	Mean of			
Sample	Frequency	ranks	ranks		Groups	
steriler Pilzkompost	22	2298,500	104,477	Α		
Mycostop	24	2577,500	107,396	Α		
Pilzkompost	24	2741,000	114,208	Α	В	
Tifi	24	2909,000	121,208	Α	В	
Kontrolle	21	2642,000	125,810	Α	В	
Mykonor	24	3070,000	127,917	Α	В	
E.Nemax	23	3141,500	136,587	Α	В	
Pilzkompost+Mykonor	21	2985,500	142,167	Α	В	
Pilzkompost+Tifi	24	3667,000	152,792	Α	В	С
Pilzkompost+E.Nemax	24	4225,000	176,042	Α	В	С
Pilzkompost+Mycostop	24	4716,000	196,500		В	С
Pilzkompost+Micosat	17	3385,000	199,118		В	С
sterile Kontrolle	23	5302,000	230,522			С

Tabelle 14: Beobachtungen, Minimum und Maximum sowie Mittelwert und Standardabweichung des Triebzuwachses [cm] aus den Topfversuchen 2013.

Variable	Observations	Minimum	Maximum	Mean	Std. deviation
Kontrolle	21	14,500	42,500	26,224	7,660
sterile Kontrolle	23	21,000	67,000	39,730	11,411
Pilzkompost	24	11,000	38,900	24,871	7,229
steriler Pilzkompost	22	12,000	38,200	24,077	6,484
E.Nemax	23	19,400	42,500	27,252	5,674
Mycostop	24	8,800	36,500	23,679	7,369
Tifi	24	7,200	34,200	25,192	6,446
Mykonor	24	12,500	37,500	25,971	6,017
Pilzkompost+E.Nemax	24	11,500	54,500	31,154	10,374
Pilzkompost+Mycostop	24	22,000	47,300	33,296	7,677
Pilzkompost+Tifi	24	16,300	50,700	29,008	8,475
Pilzkompost+Mykonor	21	13,500	38,000	27,333	7,409
Pilzkompost+Micosat	17	20,500	47,000	33,624	8,497

3.4.2 Trockengewicht Triebe

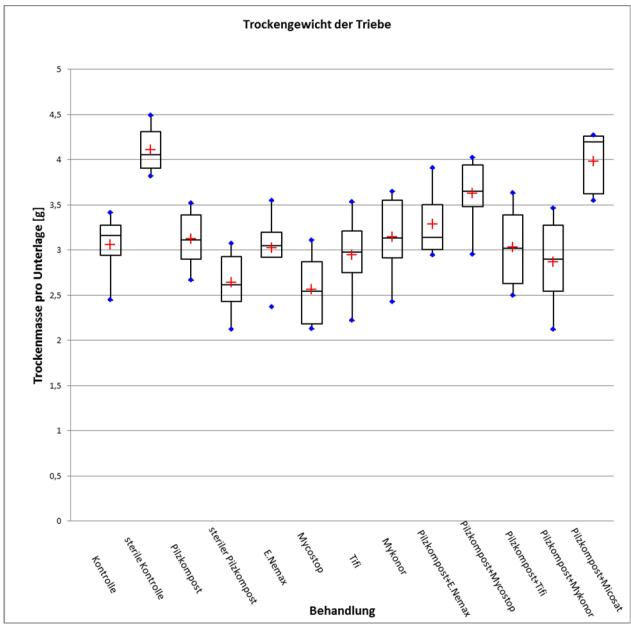


Abbildung 28: Trockengewicht der Triebe aus dem Jahr 2013 in einem Box Whisker Plot dargestellt

Tabelle 15: Multiple Paarvergleiche des Trockengewichts der Triebe. Bonferroni korrigiertes Signifikanzniveau: 0,0006.

		Sum of	Mean of		
Sample	Frequency	ranks	ranks	Gro	ups
Mycostop	6	95,000	15,833	Α	
steriler Pilzkompost	6	105,500	17,583	Α	
Pilzkompost+Mykonor	6	168,500	28,083	Α	В
Tifi	6	181,000	30,167	Α	В
E.Nemax	6	200,500	33,417	Α	В
Pilzkompost+Tifi	6	206,000	34,333	Α	В
Kontrolle	6	210,500	35,083	Α	В
Pilzkompost	6	220,500	36,750	Α	В
Mykonor	6	237,000	39,500	Α	В
Pilzkompost+E.Nemax	6	263,000	43,833	Α	В
Pilzkompost+Mycostop	6	348,000	58,000	Α	В
Pilzkompost+Micosat	5	340,500	68,100		В
sterile Kontrolle	6	427,000	71,167		В

Tabelle 16: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und Standardabweichung des Trockengewichts der Triebe [g] von den Topfversuchen 2013.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	6	2,445	3,415	3,060	0,352
sterile Kontrolle	6	3,818	4,490	4,111	0,270
Pilzkompost	6	2,668	3,518	3,119	0,338
steriler Pilzkompost	6	2,123	3,075	2,638	0,365
E.Nemax	6	2,370	3,545	3,023	0,393
Mycostop	6	2,128	3,110	2,561	0,421
Tifi	6	2,220	3,533	2,944	0,458
Mykonor	6	2,430	3,650	3,145	0,475
Pilzkompost+E.Nemax	6	2,943	3,908	3,285	0,385
Pilzkompost+Mycostop	6	2,955	4,025	3,625	0,402
Pilzkompost+Tifi	6	2,498	3,633	3,031	0,479
Pilzkompost+Mykonor	6	2,120	3,463	2,867	0,527
Pilzkompost+Micosat	5	3,545	4,270	3,979	0,363

3.4.3 Trockengewicht der Wurzeln

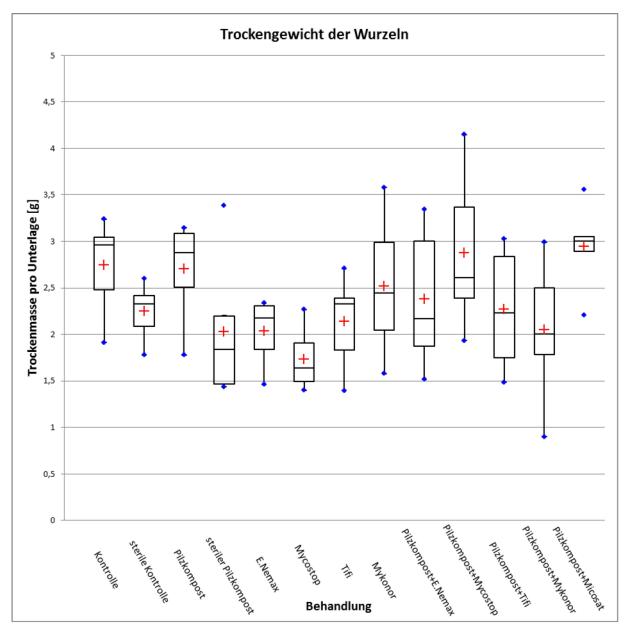


Abbildung 29: Trockengewicht der Wurzelmasse der Topfversuche aus dem Jahr 2013.

Tabelle 17: Bildung von Untergruppen welche sich nicht signifikant voneinander unterscheiden. Korrigiertes Signifikanzniveau: 0,0006.

		Sum of	Mean of	
Sample	Frequency	ranks	ranks	Groups
Mycostop	6	95,000	15,833	А
steriler Pilzkompost	6	155,500	25,917	А
E.Nemax	6	167,500	27,917	Α
Pilzkompost+Mykonor	6	182,000	30,333	Α
Tifi	6	198,000	33,000	Α
Pilzkompost+Tifi	6	219,000	36,500	Α
sterile Kontrolle	6	226,000	37,667	Α
Pilzkompost+E.Nemax	6	243,000	40,500	Α
Mykonor	6	266,000	44,333	Α
Pilzkompost	6	319,000	53,167	Α
Pilzkompost+Mycostop	6	320,000	53,333	Α
Kontrolle	6	321,000	53,500	А
Pilzkompost+Micosat	5	291,000	58,200	А

Tabelle 18: Stichprobenzahl, Min und Max sowie Mittelwert und Standardabweichung der Wurzeltrockenmasse werden gezeigt.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	6	1,913	3,240	2,745	0,512
sterile Kontrolle	6	1,780	2,603	2,250	0,298
Pilzkompost	6	1,778	3,145	2,703	0,528
steriler Pilzkompost	6	1,438	3,383	2,028	0,756
E.Nemax	6	1,460	2,335	2,037	0,356
Mycostop	6	1,400	2,268	1,732	0,334
Tifi	6	1,395	2,710	2,140	0,498
Mykonor	6	1,578	3,580	2,521	0,742
Pilzkompost+E.Nemax	6	1,515	3,348	2,377	0,755
Pilzkompost+Mycostop	6	1,933	4,150	2,873	0,835
Pilzkompost+Tifi	6	1,485	3,030	2,266	0,673
Pilzkompost+Mykonor	6	0,900	2,990	2,047	0,732
Pilzkompost+Micosat	5	2,210	3,560	2,944	0,484

3.5 Topfversuche 2014 aus WP2 und WP3

3.5.1 Trieblängenzuwachs

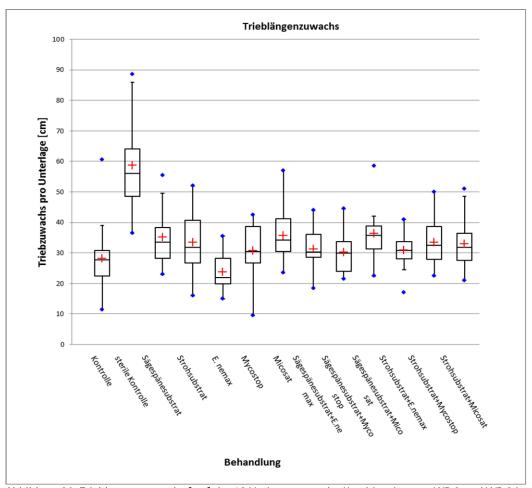


Abbildung 30: Trieblängenzuwachs [cm] der 13 Varianten aus der Kombination von WP 2 und WP 3 im Jahr 2014.

Abbildung 31: Vergleich der Töpfe bei der Bonitur im August 2014. Links: Unbehandelte Kontrolle, rechts: mikrowellen-sterilisierte Kontrolle

Tabelle 19: Bildung von homogenen Untergruppen aus den paarweisen Mittelwertvergleichen. Die sterile Kontrolle unterscheidet sich signifikant von allen anderen Gruppen (p<0,0006).

		Sum of	Mean of			
Sample	Frequency	ranks	ranks		Groups	
E. nemax	24	1414,500	58,938	Α		
Kontrolle	24	2474,000	103,083	Α	В	
Sägespänesubstrat+Mycostop	23	2970,000	129,130	Α	В	
Strohsubstrat+E.nemax	24	3370,500	140,438	Α	В	
Sägespänesubstrat+E.nemax	24	3404,000	141,833	Α	В	
Mycostop	24	3498,000	145,750	Α	В	
Strohsubstrat	24	3761,000	156,708		В	
Strohsubstrat+Micosat	24	3770,500	157,104		В	
Strohsubstrat+Mycostop	24	3876,500	161,521		В	
Sägespänesubstrat	24	4132,500	172,188		В	
Micosat	24	4410,500	183,771		В	
Sägespänesubstrat+Micosat	24	4495,500	187,313		В	
sterile Kontrolle	24	6938,500	289,104			С

Tabelle 20: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und Standardabweichung des Trieblängenzuwachses [cm] aus den Topfversuchen 2014.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	24	11,500	60,500	28,188	9,488
sterile Kontrolle	24	36,500	88,500	58,688	14,310
Sägespänesubstrat	24	23,000	55,500	35,167	8,894
Strohsubstrat	24	16,000	52,000	33,375	10,113
E. nemax	24	15,000	35,500	23,708	5,353
Mycostop	24	9,500	42,500	30,646	9,565
Micosat	24	23,500	57,000	35,675	8,404
Sägespänesubstrat+E.nemax	24	18,500	44,000	31,146	5,806
Sägespänesubstrat+Mycostop	23	21,500	44,500	30,139	6,171
Sägespänesubstrat+Micosat	24	22,500	58,500	36,404	9,801
Strohsubstrat+E.nemax	24	17,000	41,000	30,917	5,647
Strohsubstrat+Mycostop	24	22,500	50,000	33,521	7,791
Strohsubstrat+Micosat	24	21,000	51,000	33,000	7,596

3.5.2 Trockengewicht Triebe

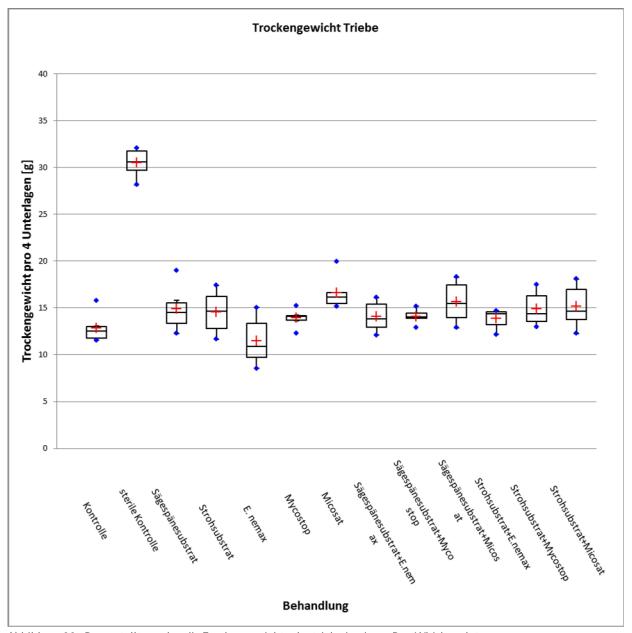


Abbildung 32: Dargestellt werden die Trockengewichte der triebe in einem Box Whisker plot.

Tabelle 21: Multiple Paarvergleiche des Trockengewichts und homogene Untergruppen. Die sterile Kontrolle unterscheidet sich signifikant von der unbehandelten Kontrolle und der Behandlung mit Ekoprop nemax (p<0,0006).

Sample	Frequency	Sum of ranks	Mean of ranks	Gro	oups
E. nemax	6	90,000	15,000	А	<u> </u>
Kontrolle	6	115,000	19,167	А	
Mycostop	6	194,000	32,333	А	В
Strohsubstrat+E.nemax	6	194,500	32,417	А	В
Sägespänesubstrat+E.nemax	6	203,000	33,833	А	В
Sägespänesubstrat+Mycostop	6	206,000	34,333	А	В
Strohsubstrat	6	226,500	37,750	А	В
Sägespänesubstrat	6	246,500	41,083	А	В
Strohsubstrat+Mycostop	6	251,000	41,833	А	В
Strohsubstrat+Micosat	6	259,500	43,250	А	В
Sägespänesubstrat+Micosat	6	288,000	48,000	А	В
Micosat	6	354,000	59,000	А	В
sterile Kontrolle	6	453,000	75,500		В

Tabelle 22: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und Standardabweichung des Trockengewichts der Triebe [g] aus den Topfversuchen 2014.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	6	11,540	15,770	12,850	1,558
sterile Kontrolle	6	28,140	32,070	30,492	1,534
Sägespänesubstrat	6	12,280	19,010	14,867	2,379
Strohsubstrat	6	11,660	17,420	14,537	2,303
E. nemax	6	8,530	15,050	11,488	2,567
Mycostop	6	12,260	15,260	13,920	0,981
Micosat	6	15,190	19,980	16,578	1,770
Sägespänesubstrat+E.nemax	6	12,110	16,100	14,078	1,617
Sägespänesubstrat+Mycostop	6	12,880	15,190	14,098	0,774
Sägespänesubstrat+Micosat	6	12,880	18,300	15,623	2,230
Strohsubstrat+E.nemax	6	12,170	14,690	13,862	1,059
Strohsubstrat+Mycostop	6	13,000	17,500	14,903	1,849
Strohsubstrat+Micosat	6	12,270	18,100	15,152	2,274

3.5.3 Frischgewicht der Triebe

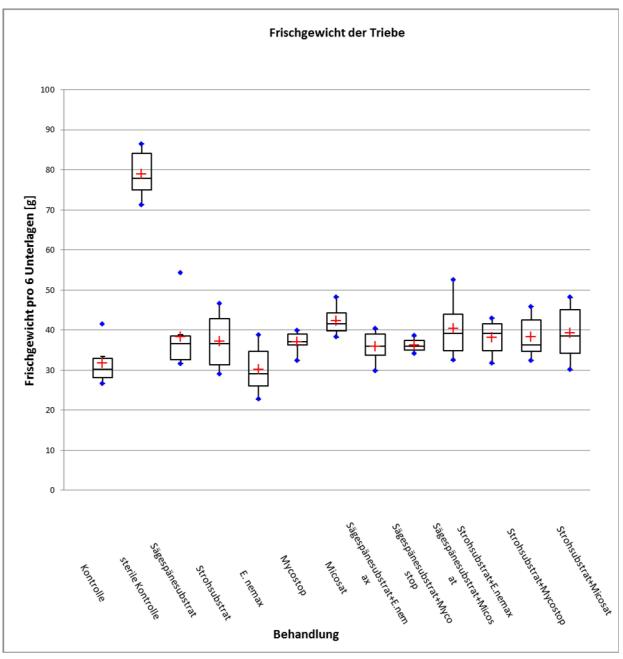


Abbildung 33: Das Frischgewicht der Triebe aus dem Jahr 2014.

Tabelle 23: Es werden die Stichprobenzahl, Rangsumme und der Rangmittelwert sowie die gebildeten Untergruppen dargestellt. Korrigiertes Signifikanzniveau: 0,0006.

		Sum of	Mean of		
Sample	Frequency	ranks	ranks	Gro	ups
E. nemax	6	95,000	15,833	Α	
Kontrolle	6	107,000	17,833	А	
Sägespänesubstrat+E.nemax	6	197,000	32,833	А	В
Sägespänesubstrat+Mycostop	6	204,000	34,000	А	В
Sägespänesubstrat	6	216,000	36,000	А	В
Strohsubstrat	6	218,000	36,333	А	В
Mycostop	6	231,000	38,500	А	В
Strohsubstrat+Mycostop	6	243,000	40,500	А	В
Strohsubstrat+E.nemax	6	251,000	41,833	А	В
Strohsubstrat+Micosat	6	256,000	42,667	А	В
Sägespänesubstrat+Micosat	6	269,000	44,833	А	В
Micosat	6	341,000	56,833	А	В
sterile Kontrolle	6	453,000	75,500		В

Tabelle 24: Stichprobenzahl, Minimum und Mximum sowie Mittelwert und Standardabweichung des Frischgewichts der Triebe [g] aus den Topfversuchen 2014.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	6	26,680	41,550	31,677	5,435
sterile Kontrolle	6	71,280	86,490	78,950	6,122
Sägespänesubstrat	6	31,620	54,250	38,262	8,382
Strohsubstrat	6	29,040	46,660	37,210	7,269
E. nemax	6	22,740	38,780	30,200	6,212
Mycostop	6	32,440	39,920	37,020	2,710
Micosat	6	38,280	48,240	42,323	3,711
Sägespänesubstrat+E.nemax	6	29,860	40,290	35,835	3,975
Sägespänesubstrat+Mycostop	6	34,160	38,560	36,210	1,700
Sägespänesubstrat+Micosat	6	32,450	52,590	40,365	7,537
Strohsubstrat+E.nemax	6	31,690	42,990	38,155	4,595
Strohsubstrat+Mycostop	6	32,420	45,820	38,280	5,513
Strohsubstrat+Micosat	6	30,110	48,170	39,235	7,255

3.5.4 Trockengewicht Wurzeln

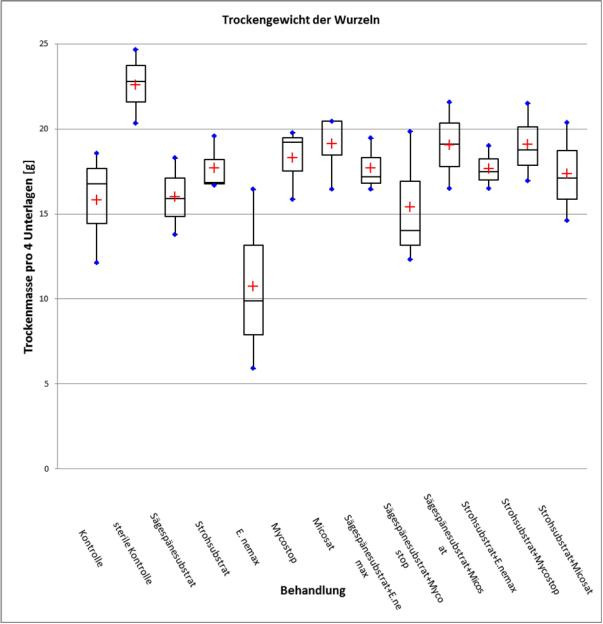


Abbildung 34: Trockengewicht der Wurzel [g] aus dem Topfversuch 2014.



Abbildung 35: Vergleich der Wurzelstruktur zwischen Wurzeln in unbehandeltem Nachbauboden (links) und mikrowellensterilisiertem Boden (rechts).

Abbildung 36: Vergleich der Wurzelstruktur zwischen Wurzeln in unbehandeltem Nachbauboden (oben) und Boden mit Ekoprop nemax behandelt (unten).

Tabelle 25: Im Trockengewicht der Wurzeln existiert zwischen der sterilen Kontrolle und der Behandlung mit Ekoprop nemax ein signifikanter Unterschied. Korrigiertes Signifikanzniveau: 0,0006.

		Sum of	Mean of		
Sample	Frequency	ranks	ranks	Gro	oups
E. nemax	3	13,000	4,333	А	
Sägespänesubstrat	3	36,000	12,000	Α	В
Sägespänesubstrat+Mycostop	3	41,000	13,667	Α	В
Kontrolle	3	42,000	14,000	Α	В
Strohsubstrat+Micosat	3	59,000	19,667	А	В
Sägespänesubstrat+E.nemax	3	59,500	19,833	А	В
Strohsubstrat+E.nemax	3	59,500	19,833	А	В
Strohsubstrat	3	61,000	20,333	А	В
Mycostop	3	65,000	21,667	А	В
Sägespänesubstrat+Micosat	3	76,500	25,500	А	В
Strohsubstrat+Mycostop	3	78,000	26,000	А	В
Micosat	3	80,500	26,833	А	В
sterile Kontrolle	3	109,000	36,333		В

Tabelle 26: Stichprobenzahl, Minimum und Maximum sowie Mittelwert und Standardabweichung des Trockengewichts der Wurzeln [g] aus den Topfversuchen 2014.

					Std.
Variable	Observations	Minimum	Maximum	Mean	deviation
Kontrolle	3	12,110	18,560	15,810	3,328
sterile Kontrolle	3	20,340	24,660	22,597	2,166
Sägespänesubstrat	3	13,780	18,290	15,997	2,256
Strohsubstrat	3	16,680	19,570	17,703	1,619
E. nemax	3	5,910	16,430	10,743	5,312
Mycostop	3	15,850	19,760	18,273	2,117
Micosat	3	16,440	20,450	19,113	2,315
Sägespänesubstrat+E.nemax	3	16,440	19,440	17,690	1,561
Sägespänesubstrat+Mycostop	3	12,320	19,850	15,393	3,951
Sägespänesubstrat+Micosat	3	16,490	21,560	19,050	2,535
Strohsubstrat+E.nemax	3	16,490	19,000	17,663	1,263
Strohsubstrat+Mycostop	3	16,950	21,500	19,070	2,291
Strohsubstrat+Micosat	3	14,600	20,360	17,360	2,887

Tabelle 27: Die Wiederholungen der Trieblänge jeder Variante wurden auf ihre Varianzgleichheit geprüft. Die erste Wiederholung der Variante "Strohsubstrat" unterscheidet sich von den beiden anderen Wiederholungen. Korrigiertes Signifikanzniveau: 0,0167.

ranks ranks ranks ranks ranks ranks Rontrolle2 8 87,000 10,875 A Rontrolle3 8 97,000 12,125 A Rontrolle1 8 116,000 14,500 A sterile Kontrolle2 8 77,000 9,625 A ranks ranks	Sample	Frequency	Sum of	Mean of	Groups
Kontrolle3 8 97,000 12,125 A Kontrolle1 8 116,000 14,500 A sterile Kontrolle2 8 77,000 9,625 A sterile Kontrolle3 8 110,500 13,813 A sterile Kontrolle1 8 112,500 14,063 A Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat2 8 137,500 17,188 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 10,125 A E. nemax3 8 126,500 19,188 B E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop3 8 102,500 12,813 A	Kantralla?	0			Λ
Kontrolle1 8 116,000 14,500 A sterile Kontrolle2 8 77,000 9,625 A sterile Kontrolle3 8 110,500 13,813 A sterile Kontrolle1 8 112,500 14,063 A Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat2 8 88,000 11,000 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat1 8 153,500 19,188 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop3 8 102,500 12,813 A					
sterile Kontrolle2 8 77,000 9,625 A sterile Kontrolle3 8 110,500 13,813 A sterile Kontrolle1 8 112,500 14,063 A Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax3 8 126,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat3 8 113,000 14,125 A			·	·	
Sterile Kontrolle3 8 110,500 13,813 A sterile Kontrolle1 8 112,500 14,063 A Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat3 8 88,000 11,000 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,813 A Micosat3 8 113,000 14,125 A					
sterile Kontrolle1 8 112,500 14,063 A Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat2 8 88,000 11,000 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop3 8 100,500 12,563 A Micosat2 8 84,500 10,563 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+Enemax2 8 89,000 11,125 A </td <td></td> <td></td> <td>·</td> <td>·</td> <td></td>			·	·	
Sägespänesubstrat1 8 74,500 9,313 A Sägespänesubstrat2 8 88,000 11,000 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat1 8 153,500 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 8,4500 10,563 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A			*		
Sägespänesubstrat3 8 88,000 11,000 A Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+Enemax3 8 93,500 11,688 A </td <td></td> <td></td> <td></td> <td>·</td> <td></td>				·	
Sägespänesubstrat2 8 137,500 17,188 A Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A </td <td>5 ,</td> <td></td> <td></td> <td>· ·</td> <td></td>	5 ,			· ·	
Strohsubstrat3 8 65,500 8,188 A Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A </td <td><u> </u></td> <td></td> <td>·</td> <td>·</td> <td></td>	<u> </u>		·	·	
Strohsubstrat2 8 81,000 10,125 A Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,18					
Strohsubstrat1 8 153,500 19,188 B E. nemax2 8 73,000 9,125 A E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Micosat2 8 79,000 9,857 A Sägespänesubstrat+Micosat1 8 79,000 9,875		8	·	·	A
E. nemax2			*		
E. nemax1 7 76,500 10,929 A E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Mycostop2 8 79,000 9,875 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Strohsubstrat1	8	153,500	19,188	В
E. nemax3 8 126,500 15,813 A Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	E. nemax2	8	73,000	9,125	А
Mycostop2 8 97,000 12,125 A Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	E. nemax1	7	76,500	10,929	Α
Mycostop1 8 100,500 12,563 A Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	E. nemax3	8	126,500	15,813	A
Mycostop3 8 102,500 12,813 A Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Mycostop2	8	97,000	12,125	А
Micosat2 8 84,500 10,563 A Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Mycostop1	8	100,500	12,563	А
Micosat1 8 102,500 12,813 A Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Mycostop3	8	102,500	12,813	А
Micosat3 8 113,000 14,125 A Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Micosat2	8	84,500	10,563	А
Sägespänesubstrat+E.nemax2 8 89,000 11,125 A Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Micosat1	8	102,500	12,813	A
Sägespänesubstrat+E.nemax3 8 93,500 11,688 A Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Micosat3	8	113,000	14,125	А
Sägespänesubstrat+E.nemax1 8 117,500 14,688 A Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Sägespänesubstrat+E.nemax2	8	89,000	11,125	A
Sägespänesubstrat+Mycostop3 7 69,000 9,857 A Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Sägespänesubstrat+E.nemax3	8	93,500	11,688	А
Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Sägespänesubstrat+E.nemax1	8	117,500	14,688	A
Sägespänesubstrat+Mycostop1 8 93,500 11,688 A Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Sägespänesubstrat+Mycostop3	7	69,000	9,857	А
Sägespänesubstrat+Mycostop2 8 113,500 14,188 A Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	3 1	8	93,500	11,688	A
Sägespänesubstrat+Micosat2 8 79,000 9,875 A Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	Sägespänesubstrat+Mycostop2	8	113,500	14,188	А
Sägespänesubstrat+Micosat1 8 87,000 10,875 A Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	J ,	8	79,000	9,875	A
Sägespänesubstrat+Micosat3 8 134,000 16,750 A Strohsubstrat+E.nemax3 8 81,500 10,188 A	<u> </u>			·	А
Strohsubstrat+E.nemax3 8 81,500 10,188 A	5 ,	8	134,000	16,750	A
	0 1	8	81,500		А
			•		
Strohsubstrat+E.nemax1 8 119,000 14,875 A					
Strohsubstrat+Mycostop1 8 80,000 10,000 A					
Strohsubstrat+Mycostop2 8 101,500 12,688 A	<u> </u>		·	·	
Strohsubstrat+Mycostop3 8 118,500 14,813 A	3 .				
Strohsubstrat+Micosat2 8 69,500 8,688 A					
Strohsubstrat+Micosat3 8 107,500 13,438 A					
Strohsubstrat+Micosat1 8 123,000 15,375 A					

3.6 Zusammenfassung der Ergebnisse aus den Topfversuchen 2012-2014

Tabelle 28: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit Komposten und organischem Material.

		Triek	olänge	Trockengewic	cht der Triebe	
Variante	Jahr	vs. Kontrolle	vs. sterile Kontrolle	vs. Kontrolle	vs. sterile Kontrolle	
Klärschlamm	2012	-		-		
Grünschnitt	2012	-		+		
Bio-Abfall	2012	++		-		
Stallmist	2012	+		-		
Obstabfälle	2012	+		-		
Regenwurmhumus	2012	+		-		
Terra preta	2012	-		-		
Pilzkompost	2013	+		+		
Pilzkompost (steril)	2013	+		-		
Sägespänesubstrat	2014	+		+	-	
Strohsubstrat	2014	+		+	-	
+ besser ++ signifikant besser schlechter signifikant schlechter						

Tabelle 29: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit kommerziell erhältlichen biologischen Bodenverbesserern.

		Triek	olänge	Trockengewi	cht der Triebe
Variante	Jahr	vs. Kontrolle	vs. sterile Kontrolle	vs. Kontrolle	vs. sterile Kontrolle
Greenfit KOBA	2012	-		-	
Symbivit	2012	-		-	
Trichostar	2012	+		-	
Rhizovital 42	2012	-		-	
FZB 24 WG	2012	+		-	
Promot	2012	-		-	
Ekoprop nemax		-		-	-
	2013	+		-	
	2014	-		-	
Micosat F	2012	+		-	-
	2014	+		+	
Mycostop	2012	+		-	-
	2013	-		-	
	2014	+		+	
Aegis	2012	+		-	
Tifi	2012	+		-	
Condor	2012	+		-	
Ozor	2012	+		-	
Bio-Microl	2012	+		-	
Myconor	2013			+	-
+ besser	++ signifik	ant besser s	chlechter	signifikant	schlechter

Tabelle 30: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit Kombinationen aus organischem Material und kommerziell erhältlichen Bodenverbesserern.

		Trieb	länge	Trockengewic	ht der Triebe
Variante	Jahr	vs. Kontrolle	vs. sterile Kontrolle	vs. Kontrolle	vs. sterile Kontrolle
Pilzkompost +	2013	+	-	+	-
Ekoprop nemax					
Sägespänesubstr.	2014	+		+	-
+ E. nemax					
Strohsubstrat + E.	2014	+		+	-
Nemax					
Pilzkompost +	2013	+	-	+	-
Mycostop					
Sägespänesubstr.	2014	+		+	-
+ Mycostop					
Strohsubstrat +	2014	+		+	-
Mycostop					
Pilzkompost +	2013	+	-	+	-
Micosat F					
Sägespänesubstr.	2014	+		+	-
+ Micosat F					
Strohsubstrat +	2014	+		+	-
Micosat F					
Pilzkompost + Tifi	2013	+	-	-	-
Pilzkompost +	2013	+		-	-
Mykonor					
+ besser ++	signifik	ant besser <mark>-</mark> so	chlechter	signifikant	schlechter

3.7 WP 4 Task 1 – Neu angelegter Freilandversuch

3.7.1 Ergebnisse 2013

3.7.1.1 Stammdurchmesser

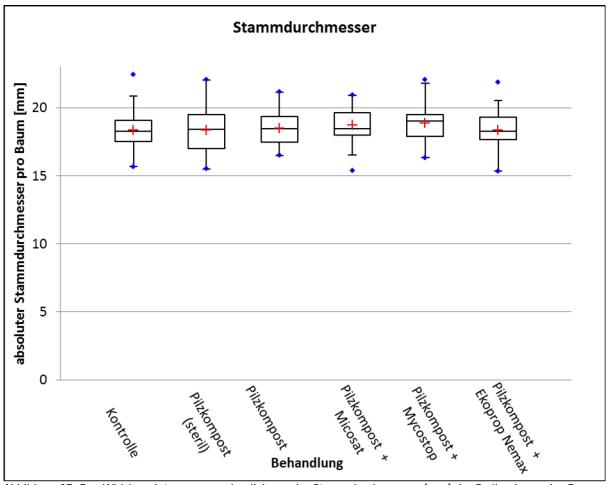


Abbildung 37: Box Whisker plot zur veranschaulichung des Stammdurchmessers [mm] des Freilandversuchs. Es herrschen keine signifikanten Unterschiede zwischen den Gruppen (p> 0,0033).

Tabelle 31: Multiple Paarvergleiche des Stammdurchmessers aus den Daten des Freilandversuchs. Ermittelt im Herbst 2013. p-alpha Korrektur nach Bonferroni: 0,0033.

		Rang-		
Stichprobe	Häufigkeit	Summe	Rangmittel	Gruppen
Kontrolle	40	4378,500	109,463	Α
Pilzkompost				
(steril)	40	4437,500	110,938	Α
Pilzkompost +				
Ekoprop Nemax	40	4556,000	113,900	Α
Pilzkompost	40	4759,500	118,988	Α
Pilzkompost +				
Micosat	40	5327,000	133,175	Α
Pilzkompost +				
Mycostop	40	5461,500	136,538	Α

3.7.1.2 Trieblängenzuwachs

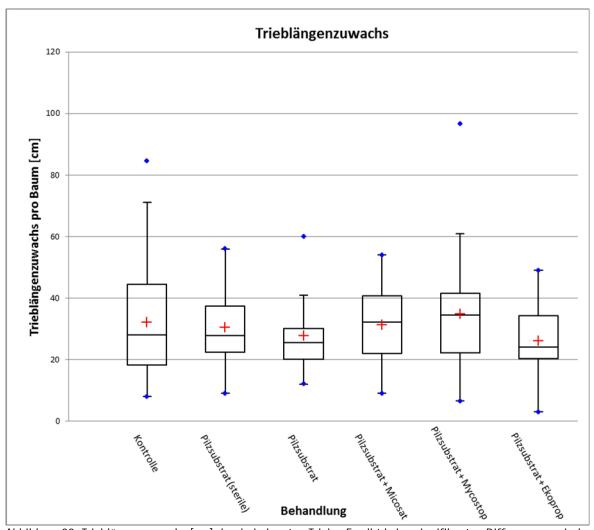


Abbildung 38: Trieblängenzuwachs [cm] der drei obersten Triebe. Es gibt keine signifikanten Differenzen zwischen den verschiedenen Maßnahmen vor einer Pflanzung.

Tabelle 32: Multiple Paarvergleiche und homogene Untergruppen des Trieblängenzuwachses. Die Stichproben unterscheiden sich nicht signifikant voneinander (p>0,0033).

		Rang-		
Stichprobe	Häufigkeit	Summe	Rangmittel	Gruppen
Pilzkompost	40	4117,000	102,925	А
Pilzkompost +				
Ekoprop Nemax	40	4232,000	105,800	Α
Kontrolle	40	4747,500	118,688	Α
Pilzkompost				
(steril)	40	5052,500	126,313	Α
Pilzkompost +				
Micosat	40	5238,000	130,950	Α
Pilzkompost +				
Mycostop	40	5533,000	138,325	Α

3.7.2 Ergebnisse 2014

3.7.2.1 Stammdurchmesser

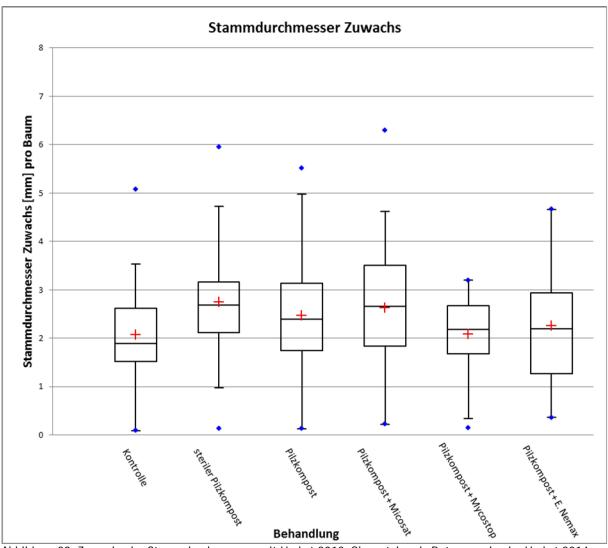


Abbildung 39: Zuwachs des Stammdurchmessers seit Herbst 2013. Oben stehende Daten wurden im Herbst 2014 erhoben.

Tabelle 33: Bildung von homogenen Untergruppen anhand des Stammdurchmesserzuwachses. Korrigiertes Signifikanzniveau: 0,0033

		Sum of	Mean of	
Sample	Frequency	ranks	ranks	Groups
Kontrolle	39	3642,000	93,385	Α
Pilzkompost +				
Mycostop	38	3794,000	99,842	Α
Pilzkompost + E.				
Nemax	37	4036,500	109,095	Α
Pilzkompost	38	4571,500	120,303	Α
Pilzkompost +				
Micosat	39	5157,500	132,244	Α
steriler Pilzkompost	39	5363,500	137,526	Α

3.7.2.2 Trieblängenzuwachs

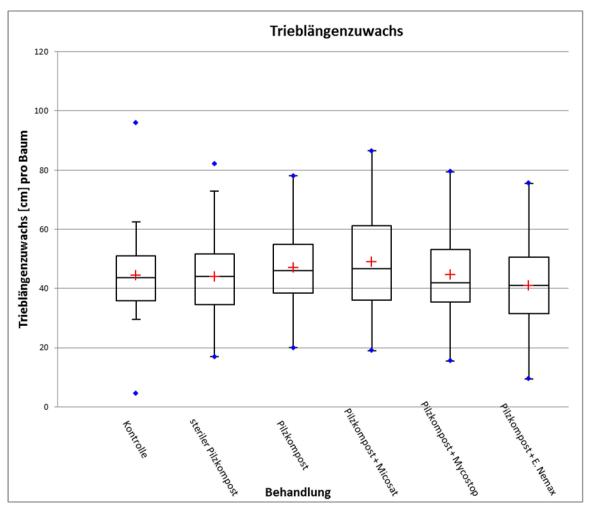


Abbildung 40: Trieblängenzuwachs der obersten drei Triebe eines jeden Baumes im Jahr 2014.

Tabelle 34: Es gibt keine signifikanten Unterschiede im Trieblängenzuwachs zwei Jahre nach der Pflanzung. Homogene Untergruppen werden dargestellt. Korrigiertes Signifikanzniveau: 0,0033.

		Sum of	Mean of	
Sample	Frequency	ranks	ranks	Groups
Pilzkompost + E.				
Nemax	40	4118,000	102,950	Α
steriler Pilzkompost	39	4423,000	113,410	Α
Pilzkompost +				
Mycostop	40	4693,500	117,338	Α
Kontrolle	40	4695,000	117,375	Α
Pilzkompost	38	4895,500	128,829	Α
Pilzkompost +				
Micosat	40	5378,000	134,450	Α

3.8 WP 4 – Task 2: Weiterführung von Freilandversuchen

WP 4: Innovative Kulturmaßnahmen zur Erhöhung der funktionellen Bodenbiologie in biologischen Obstkulturen in Mittelmeer- und gemäßigten Klimazonen Europas.

Task 2: Bodenmanagement und kombinierte Verfahren vor der Pflanzung zur Reduktion der Nachbaukrankheit beim Apfel im biologischen Anbau.

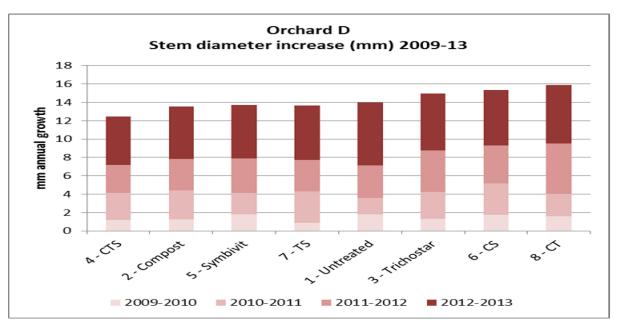


Abb. 41: Stammdurchmesser (jährlicher Zuwachs in mm) in den Versuchsjahren 2009-2013 im Freilandversuch (WP 4)

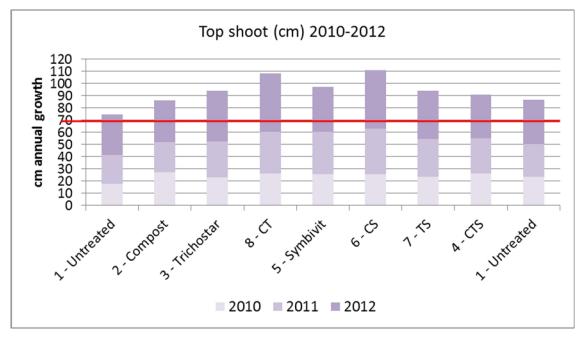


Abb. 42: Jährlicher Trieblängenzuwachs in cm des Wipfeltriebes bei den 30 Versuchsbäumen in den verschiedenen Varianten.

4 DISKUSSION

4.1 Vergleich der Pathogenzusammensetzung vor und nach Sterilisation im verwendeten Versuchsboden

Wie die Ergebnisse aus der PCR-Untersuchung von Agroscope in Wädenswil deutlich zeigen, waren in den Bodenproben aus dem Freilandversuch in WP 4, der auch für die Topfversuche 2013 und 2014 herangezogen wurde, der Ausgangsdruck mit potentiell pathogenen Pilzarten vorhanden. In beiden Versuchsjahren waren in allen untersuchten Replikaten Cylindrocarpon-Arten zu finden. Etwas anders verhalten sich die Zahlen bei den anderen Pathogenen. Im Jahr 2013 war lediglich in 2 von 5 Replikaten Pythium nachweisbar. Im Jahr 2014 war neben Pythium (in 80% der Replikate) weiters noch Phytophthora und Rhizoctonia gefunden worden. Vergleicht man nun die Werte nach erfolgter Sterilisation mit verschiedenen Verfahren, so sieht man die hohe Wirksamkeit der Mikrowellensterilisation im Jahr 2014. In diesen Proben war in keiner der Replikate einer der fünf untersuchten Pathogen-Gattungen auffindbar. Bei der Dampfsterilisation mit dem Sterilo 7K, die im Jahr 2013 durchgeführt wurde, waren immer noch in 4 von 5 Replikaten Cylindrocarpon-Arten nachweisbar. Es kann also davon ausgegangen werden, dass im Jahr 2013 die "sterile" Kontrolle nicht vollständig von Pathogenen befreit werden konnte. Das erklärt auch die relativ geringeren Unterschiede im Wachstum zwischen

unbehandelter Kontrolle und steriler Kontrolle im Jahr 2013. Klar ersichtlich war dieser Sterilisations-Effekt zu Beginn des Versuches im Jahr 2014. In der sterilen Kontrolle war lange Zeit kein Unkrautbewuchs in den Töpfen zu erkennen, während in den anderen Varianten schon die ersten Blätter zu sehen waren (siehe Abb. 43). Zuerst wirkten die Unterlagen im sterilen Boden auch wesentlich schwächer, was

Abbildung 43: Im Vergleich war in der sterilen Kontrolle wenige Wochen nach Versuchsbeginn kein Unkrautbewuchs feststellbar. Die Mikrowellensterilisation hat auch die Samenunkräuter im Boden abgetötet..

sich allerdings bis zum Ende des Versuches ganz ins Gegenteil verändert hat (siehe Abb. 31).

Wie die Aufnahmen aus dem Jahr 2014 zeigen, entwickeln sich auch die Wurzeln der Unterlagen im Topf auf Nachbauboden ganz anders als im sterilisierten Boden (siehe Abb. 35). Die Wurzeln im Nachbauboden weisen mehr dunkelbraune bis schwarz gefärbte Stellen auf und wirken weniger voluminös als die Wurzeln im sterilen Boden. Außerdem bilden sie im sterilen Boden mehr Feinwurzeln, was auch eine wesentlich bessere Aufnahme von Wasser und Nährstoffen gewährleistet.

4.2 Einsatz von Kompost oder anderem organischem Material zur Förderung bodenbürtiger Mikroorganismen

Im Jahr 2012 wurde ein Screening von Komposten mit unterschiedlichen Ausgangsstoffen und andere organische Materialien untersucht, um herauszufinden, welche am besten für die Entwicklung von innovativen Anbaumethoden geeignet sein könnten. Aus den Topfversuchen in diesem Jahr in Haidegg war kein deutlicher Effekt erkennbar. Lediglich die Werte von Bioabfallkompost zeigten beim Triebwachstum signifikant bessere Werte als die unbehandelte Kontrolle. Sterile Kontrolle zum Erkennen des Wuchspotentials im Boden wurde damals keine mitgeführt. Beim Trockengewicht war die Variante mit Bioabfall-Kompost allerdings schlechter als die Kontrolle. Die nächst besseren Ergebnisse konnten mit dem Stallmist-Kompost und Kompost aus Obstabfällen erzielt werden. Da in den Ergebnissen aus den Screenings vom deutschen Projektpartner DLR Rheinpfalz sehr gute und signifikant bessere Ergebnisse mit dem Produkt Champost (Substrat aus der Bio-Champignonzucht) erzielt wurden und das Produkt Champost dort als sehr homogen und mit relativ gleichmäßiger Qualität verfügbar ist, wurde für die weiteren Projektversuche beschlossen, diesen für die Weiterentwicklung einer Anbaumethode heranzuziehen.

Für das Projekt sollten regional verfügbare Materialien verwendet werden. Da es in Österreich nicht möglich war, einen Champignonzüchter zu finden, wurde für die weiteren Versuche auf Substrate aus der Bio-Anzucht von anderen Speisepilzen (wie z.B. Kräuterseitlinge) zurückgegriffen.

In weiterer Folge konnte in keinem der Topfversuche eine statistisch signifikante Verbesserung des Wachstums auf Nachbauboden durch Zusatz von Pilzkompost bzw. Pilzsubstrat nachgewiesen werden. Es gab auch keinen Einfluss des Reifegrades oder der Zusammensetzung des verwendeten Substrates.

Im Freilandversuch aus WP 4 ist ersichtlich, dass im ersten Versuchsjahr in den Varianten mit dem Pilzkompost der Stammdurchmesser tendenziell mehr Zuwachs zeigte als bei den Bäumen, die direkt in den Nachbauboden gepflanzt wurden. Ob der Pilzkompost vorher sterilisiert wurde oder nicht, macht sowohl in den Topfversuchen als auch im Freilandversuch keinen Unterschied.

4.3 Einsatz von biologischen Bodenverbesserern zur Bekämpfung der Nachbaukrankheit

Im Jahr 2012 wurde ein Screening von 14 verschiedenen kommerziell verfügbaren Produkten mit mikrobieller Zusammensetzung durhcgeführt, um die Auswahl für die Weiterführung der Versuche im Projekt weiter einschränken zu können.

Im ersten Screening auf dem Nachbauboden aus der Versuchsanlage in Haidegg zeigten alle Behandlungen schlechtere Ergebnisse im Trockengewicht der zugewachsenen Triebe im Vergleich zur Kontrolle. Nur bei der Messung der Trieblänge waren leicht Tendenzen erkennbar, die aber statistisch nicht absicherbar waren. In Abstimmung mit den Ergebnissen vom DLR Rheinpfalz wurden folgende Präparate für die Weiterführung der Versuche bestimmt: Ekoprop nemax, Micosat F, Mycostop und Tifi.

In den darauffolgenden Topfversuchen in den Jahren 2013 und 2014 war in keiner der Behandlungen ein deutlich positiver Effekt auf die Trieblänge, auf das Trockengewicht der Triebe oder auf die Wurzelentwicklung feststellbar.

Bemerkenswert war, dass die Behandlung mit Ekoprop nemax im Versuchsjahr 2014 tendenziell schlechtere Ergebnisse brachte, die auch optisch deutlich zu bemerken waren. Die Wurzelentwicklung in dieser Variante war massiv schwächer als in der sterilen Kontrollvariante (siehe Abb. 36)

Die Wirksamkeit mikrobieller Präparate ist stark von den Einflüssen der Umwelt abhängig. Grundsätzlich stellt sich die Frage, ob solche bio-agents, die in den meisten Fällen aus Sporen oder anderen Überdauerungsformen bestehen, in jeder Umgebung ihr Potential optimal ausschöpfen können. Neben abiotischen Faktoren wie z.B. Bodenfeuchte, Struktur des Bodens oder Temperatur spielen auch biotische Faktoren bei der Wirksamkeit dieser Produkte eine große Rolle. Die Konkurrenz zu anderen Mikroorganismen ist unter verschiedenen Bedingungen in verschiedenen Böden unterschiedlich stark ausgeprägt. Detaillierteres Wissen über Konkurrenz, die Nutzung von Nischen und gegenseitige Beeinflussung von mikrobiellen Populationen in Böden wäre notwendig, um langfristige Erfolge in der Anwendung solcher Produkte zu erzielen.

Da aus vorangegangenen Versuchen bereits bekannt war, dass der alleinige Einsatz von biologischen Bodenverbesserern in Nachbauböden keine Wirksamkeit zeigt, wurde bei der Anlage des Feldversuches auf die Varianten mit reinem Einsatz von biological agents verzichtet und gezielt Kombinationsvarianten mit verfügbarem Kompostmaterial angelegt.

4.4 Kombination von Kompost und biologischen Bodenverbesserern

Am sinnvollsten scheint die Kombination der Maßnahmen von Kompostzugabe bei der Pflanzung auf Nachbauböden mit zusätzlichen Behandlungen von biologischen Bodenverbesserern. Sowohl die Topfversuche aus den Jahren 2013 und 2014 als auch der Freilandversuch zeigen leichte Effekte bei der Kombination von Bio-Pilzsubstraten mit Mycostop oder Micosat F.

Interessant ist auch, dass der negative Effekt von Ekoprop nemax im Topfversuch 2014 durch die Kombination mit dem organischen Substrat wieder aufgehoben werden konnte.

4.5 Generelles Fazit

Die Nachbaukrankheit beim Apfel in den untersuchten Böden aus der Steiermark wird vordergründig von Pilzen der Gattung Cylindrocarpon verursacht. Andere Gattungen wir Pythium oder Phytophthora können in manchen Fällen mit beteiligt sein.

Durch die Einbringung von organischem Material in Form von Substraten aus der biologischen Anzucht von Speisepilzen in Nachbauböden in Kombination mit zwei Produkten (Mycostop und Micosat F), die als Mikroorganismen zur Verbesserung der Bodenbiologie beinhalten, konnte sowohl in den Topf-Modellversuchen als auch im Freilandversuch eine leichte Verbesserung des Baumwachstums festgestellt werden. Von einer Bekämpfung der Nachbaukrankheit kann man dabei allerdings nicht ausgehen, da die erzielbaren Werte in sterilisierten Nachbauböden deutlich höher liegen. Allenfalls kommt es durch das Einbringen zu einer Strukturverbesserung und möglicherweise zu einer Verbesserung von Nährstoffverfügbarkeiten und Aufnahmemechanismen. An einer physikalischen Behandlung von stark betroffenen Nachbauböden führt also nach derzeitigem Stand des Wissens kein Weg vorbei.

5 Literatur

- Aldenhoff, S. (2007). Biofumigation Eine Lösung für Pflanzenschutzprobleme im Gemüsebau? Rheinische Monatsschrift 2, p. 91.
- Bingye, X. & Shengrui, Y. (1998). Studies on replant problems of apple and peach. Acta Horticulturae 477, pp. 83-88.
- Bird, G.W. (1968). Orchard replant problems. Revised 1973 by Wensley, R.N. Canadian Department for Agricultural Publicity 1375.
- Bosshard, E. Rüegg, J. & Heller, W. (2004). Bodenmüdigkeit, Nachbauprobleme und Wurzelkrankheiten. Schweizerische Zeitung für Obst- und Weinbau 10, pp. 6-9.
- Brown, P.D. & Morra, M.J. (1997). Control of soil-borne plant pests using gucosinolat-containing plants. Advances in Agronomy 61, pp. 167-231.
- Caruso, F.L., Neubauer, B.F. & Begin, M.D. (1989). A histological study of apple roots affected by replant disease. Canadian Journal of Botany 67, pp. 742-749.
- Catska, V., Vancura, V., Hudska, G. & Prikryl, Z. (1982). Rhizosphere micro-organisms in relation to the apple replant problem. Plant and Soil 69, pp. 187-197.
- Catska, V. (1988). Biological methods in relation to apple replant problem. Acta Horticulturae 233; pp. 45–48.
- Fischer, M. (2002). Apfelanbau integriert und biologisch. Ulmer-Verlag, ISBN 3-8001-3237-0, pp. 55-60.
- Fischer, M. & Weber, H.J. (2005). Birnenanbau integriert und biologisch. Ulmer-Verlag, ISBN 3-8001-4576-6, pp. 51-52.
- Friedrich, G. & Fischer, M. (2000). Physiologische Grundlagen des Obstbaues. Ulmer-Verlag, ISBN 3-8001-3475-6, pp. 281-296.
- Granatstein, D. & Mazzola, M. (2001). Alternatives to fumigation for control of apple replant disease in Washington State Orchards. IOBC WPRS Bulletin, http://organic.tfrec.wsu.edu.
- Gu, Y.H. & Mazzola, M. (2003). Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Applied Soil Ecology 24, pp. 57-72.
- Gur, A., Luzzati, J. & Katan, J. (1998). Alternatives for soil fumigation in combating apple replant disease. Acta Horticulturae 477, pp. 107-113.
- Hein, K. (1972). Beiträge zum Problem der Bodenmüdigkeit. Gartenbau-Wissenschaft 35, pp. 47-71.

- Hoestra, H. (1968). Replant diseases of apple in The Netherlands. Mededelingen van de Landbouwhoogeschool te Wageningen 13, pp. 1-105.
- Hoestra, H. (1994). Ecology and pathology of replant problems. Acta Horticulturae 363, pp. 1-10.
- Jackson, J.E. (2003). Biology of Apples and Pears. Cambridge University Press, ISBN 0-521-38018-9, pp. 281-296.
- Jonkers, H. & Hoestra, H. (1978). Soil pH in fruit trees in relation to specific replant disorders of apple. Science of Horticulture 8, pp. 113-118.
- Kümmeler, L. (1981). Untersuchungen zum Ursachenkomplex der Bodenmüdigkeit bei Obstgehölzen. Teil III: Gehalt einiger gesättigter Kohlenwasserstoffe in Boden verschiedenen Müdigkeitsgrades. Erwerbsobstbau 24, pp. 246-248.
- Leinfelder, M.M. & Merwin, I.A. (2006). Management strategies for apple replant disease. New York Fruit Quarterly 14, pp. 39-42.
- Mai, W.F. & Abawi, G.W. (1981). Controlling replant diseases from pome and stone fruits in northeastern United States by preplant fumigation. Plant Disease 65, pp. 859 864.
- Manici, L.M., Ciavatta, C., Kelderer, M. & Erschbaumer, G. (2003). Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil 256, pp. 315-324.
- Maurer, J. (2003). Bodenmüdigkeit ein Existenzproblem im Obstbau und in der Baumschule. Zusammenfassung von Inforama, Fachstelle Obst und Beeren, Oeschberg, Koppingen.
- Mazzola, M. (1997). Identification and Pathogenicity of Rhizoctonia spp. Isolated from Apple Roots and Orchard Soils. Phytopathology 87, pp. 582-587.
- Mazzola, M. (1998). Elucidation of the Microbial Complex Having a Causal Role in the Development of Apple Replant Disease in Washington. Phytopathology 88, pp. 930-938.
- Mazzola, M. (1999). Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 89, pp.920-927.
- Mazzola, M., Granatstein, D.M., Elfving, D.C. & Mullinix, K. (2001). Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91, pp. 673-679.
- Mazzola, M., Granatstein, D.M., Elfving, D.C., Mullinix, K. & Gu, Y.H. (2002). Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92, pp- 1363-1366.
- Meijer, B. & Lamers, J. (2004). Biologische grondontsmetting bestrijding van bodemziekten voor een gezonde bodem. PPO-publicatie Nr. 415.
- Mountain, W.B. & Patrick, Z.A. (1959). The peach replant problem in Ontario. VII. The pathogenicity of Pratylenchus penetrans. Canadian Journal of Botany 37; pp. 459-470.

- Otto, G. & Winkler, H. (1977). Untersuchungen über die Ursache der Bodenmüdigkeit bei Obstgehölzen. VI. Nachweis von Aktinomyceten in Faserwurzeln von Apfelsämlingen in Böden mit verschiedenen Müdigkeitsgraden. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 132; pp. 593-606.
- Patrick; Z.A. & Koch, L.W. (1963). The adverse influence of phytotoxic substances from decomposing plant residues on resistance of tobacco to black root rot. Canadian Journal of Botany 41, pp. 747-758.
- Patrick, Z.A. & Tousson, T.A. (1965). Plant residues and organic amendments in relation to biological control. Ecology of soil-borne plant pathogens (ed. by Baker & Snyder, University of California Press, Berkeley), pp. 440-457.
- Rumberger, A., Merwin, I.A. & Thies, J.E. (2007). Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biology and Biochemistry 39, pp. 1645-1654.
- Savory, B.M. (1966). Specific replant diseases. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks.
- Sewell, G.W.F. (1981). Effects of Pythium species on the growth of apple and their possible role in apple replant diseases. Annals of applied Biology 97, pp. 31-42.
- Slykhuis, J.T. & Li, T.S.C. (1985). Response of apple seedlings to biocides and phosphate fertilizers in orchard soils in British Columbia. Canadian Journal of Plant Pathology 7, pp. 294-301.
- Szabo, K. (1999). Das Phänomen der Bodenmüdigkeit 9, pp. 495-498.
- Upstone, M. (1977). New apple rootstocks seen as one answer to replant disease. Grower 87, pp. 635-637.
- Uthkede, R.S. (1984). Antagonism of isolates of Bacillus subtilis to Phtophthora cactorum. Canadian Journal of Botany 12, pp. 1032-1035.
- Uthkede, R.S. & Li, T.S.C. (1988). The role of fungi, bacteria and their interactions in apple replant disease complex in soils of British Columbia. Acta Horticulturae 233, pp. 75-80.
- Uthkede, R.S., Vrain, T.C. & Yorston, J.M. (1992). Effects of nematodes, fungi and bacteria on the growth of young apple trees grown in apple replant disease soil. Plant and Soil 139, pp. 1-6.
- Uthkede, R.S. & Smith, E.M. (1994). Development of biological control of apple replant disease. Acta Horticulturae 363, pp. 129-134.
- Uthkede, R.S., Sholberg, P.L. & Smirle, M.J. (2001). Effects of chemical and biological treatments on growth and yield of apple trees planted in Phytophthora cactorum infested soil. Canadian Journal of Plant Pathology 23, pp. 163-167.

- Wilson, S., Andrews, P. & Nair, T.S. (2004). Non-fumigant management of apple replant disease. Scientia Horticulturae 102, pp. 221-231.
- Yadava, V.L. & Doud, S.L. (1980). The short life and replant problems of deciduous fruit trees. Horticultural Reviews 2, pp. 1-116.

6 Anhang6.1 Abbildungsverzeichnis

Abb. 1: Konidiosporen von Thielaviopsis basicola	7
Abb. 2: Am Beispiel von Streptomyces erkennt man das typische mycelartige Wachstum der Aktinomyceten	8
Abb. 3: Aktinomyceten wurden auch in den Wurzeln der Apfelbeere (Aronia) nachgewiesen	9
Abb. 4: Pratylenchus penetrans	10
Abb. 5: Weizen als Vorkultur begünstigt die Zusammensetzung der Bodenmikroflora	11
Abb. 6: Brassica napus (Raps).	11
Abb. 7: Brassica juncea (Brauner Senf)	12
Abb. 8: Isothiocyanat	
Abb. 9: Die Bildung von Isothiocyanat aus Glucosinolaten durch das Enzym Myrosinase	
Abb. 10: Aktivkohle	
Abbildung 11: Das Gewächshaus in Haidegg, Ragnitzstrasse 193, 8047 Graz. Nördliche Breite: 47,077°. östlic	
Länge: 15,500°	16
Abbildung 12: Frisch gepflanzte M9 Unterlagen, am 04.05.2012. Die Töpfe wurden in die Erde eingegraben	17
Abbildung 13: Die Unterlagen wurden auf eine Länge von ca. 30 cm gekürzt. Sobald Knospen sichtbar war	en,
wurden diese entfernt, sodass 3 Triebe übrig blieben	17
Abbildung 14: Zeitliche Abfolge des Nachbauversuchs im Jahr 2012. Im Zeitraum von 1. – 4. Mai fanden a	alle
Pflanzungen statt. Die Unterlagen befanden sich mind. 85 Tage in der Vegetationsphase. Zwischen 24. und 27. J	Juli
fand die letzte Bonitur statt	20
Abbildung 15: Gleich nachdem die Unterlagen aus der Erde entnommen wurden, fotografierte man diese für e	ine
spätere Wurzelbonitur. Die Unterlagen wurden, je nach Ausprägung des Wurzelsystems, in Klassen von 1-4 (1	1 =
schlechtes Wurzelwachstum, 4 = gutes Wurzelwachstum) eingeordnet	21
Abbildung 16: In diesem Zylinder wurde der Regenwurmhumus für 24 Stunden belüftet. Der entstandene Tee wui	rde
wie Gießwasser angewendet	
Abbildung 17: Der Bodendämpfer Sterilo 7K. Nach 5-stündigem Dämpfen des kompostierten Pilzsubstrats bei 90	
geöffnet	
Abbildung 18: Links: Unkompostiertes Bio-Pilzsubstrat aus Stroh; rechtes Bild: Unkompostiertes Bio-Pilzsubst	
aus Sägespänen und Getreideresten.	
Abbildung 19: Gezeigt wird die Variante aus Bio-Pilzsubstrat mit Micosat. Vor dem Einsetzen der Unterlage wur	
der Inhalt vermischt.	
Abbildung 20: Randomisierte Anordnung der 4 Wiederholungen mit jeweils 10 Bäumen pro Versuchsvariante. (na	
Lochow und Schuster)	
Abbildung 21: Links: Die Versuchsanlage in Hafning (Bezirk Weiz) nach der Pflanzung im Zuge von WP 4; rech	
Triebbonitur im Freiland im Herbst 2013.	
Abbildung 22: Trieblängenzuwachs der drei Triebe in den untersuchten Varianten.	
Abbildung 23: Trockengewicht der drei zugewachsenen Triebe nach dem Versuch	
Abbildung 24: Trieblängenzuwachs der drei Triebe in den untersuchten Varianten.	
Abbildung 25: Trockengewicht der drei zugewachsenen Triebe nach dem Versuch	
Abbildung 26: Trieblängenzuwachs in einem Boxplot dargestellt. Blaue Punkte: Minimum und Maximum; ro	
Kreuze: Mittelwert. Erstellt aus den Daten der Trieblängenmessung 2013.	
Abbildung 27: Vergleich der Töpfe am 12. August 2013 kurz vor der Bonitur. Links: unbehandelte Kontrolle, rech dampfeterilisierter Kontrollhaden	
dampfsterilisierter Kontrollboden	
Abbildung 28: Trockengewicht der Triebe aus dem Jahr 2013 in einem Box Whisker Plot dargestellt	
Abbildung 29: Trockengewicht der Wurzelmasse der Topfversuche aus dem Jahr 2013	
Abbildung 30: Trieblängenzuwachs [cm] der 13 Varianten aus der Kombination von WP 2 und WP 3 im Jahr 20	
	40

Abbildung 31: Vergleich der Töpfe bei der Bonitur im August 2014. Links: Unbehandelte Kontrolle, rechts:
mikrowellen-sterilisierte Kontrolle
Abbildung 32: Dargestellt werden die Trockengewichte der triebe in einem Box Whisker plot47
Abbildung 33: Das Frischgewicht der Triebe aus dem Jahr 201449
Abbildung 34: Trockengewicht der Wurzel [g] aus dem Topfversuch 201451
Abbildung 35: Vergleich der Wurzelstruktur zwischen Wurzeln in unbehandeltem Nachbauboden (links) und
mikrowellensterilisiertem Boden (rechts)
Abbildung 36: Vergleich der Wurzelstruktur zwischen Wurzeln in unbehandeltem Nachbauboden (oben) und Boder
mit Ekoprop nemax behandelt (unten)
Abbildung 37: Box Whisker plot zur veranschaulichung des Stammdurchmessers [mm] des Freilandversuchs. Es
herrschen keine signifikanten Unterschiede zwischen den Gruppen (p> 0,0033)57
Abbildung 38: Trieblängenzuwachs [cm] der drei obersten Triebe. Es gibt keine signifikanten Differenzen zwischer
den verschiedenen Maßnahmen vor einer Pflanzung58
Abbildung 39: Zuwachs des Stammdurchmessers seit Herbst 2013. Oben stehende Daten wurden im Herbst 2014
erhoben
Abbildung 40: Trieblängenzuwachs der obersten drei Triebe eines jeden Baumes im Jahr 2014 60
Abb. 41: Stammdurchmesser (jährlicher Zuwachs in mm) in den Versuchsjahren 2009-2013 im Freilandversuch (WP 4)
61
Abb. 42: Jährlicher Trieblängenzuwachs in cm des Wipfeltriebes bei den 30 Versuchsbäumen in den verschiedenen
Varianten
Abbildung 43: Im Vergleich war in der sterilen Kontrolle wenige Wochen nach Versuchsbeginn kein
Unkrautbewuchs feststellbar. Die Mikrowellensterilisation hat auch die Samenunkräuter im Boden abgetötet 62

6.2 Tabellenverzeichnis

Tabelle 1: Zusammenfassung aller verwendeten Pflanzenhilfsstoffe und deren Zusammensetzung. Es wird
angegeben, in welchem Versuchsjahr die Präparate verwendet wurden
Tabelle 2: Verwendete Komposte im Jahr 2012 und deren chemische Zusammensetzung21
Tabelle 3: Die im Jahr 2012 verwendeten biologischen Produkte zur Bodenaufwertung aus dem WP 3.
Stichprobenzahl, Aufwandmenge sowie Anzahl der Anwendungen werden dargestellt23
Tabelle 4: Versuchsaufbau und Varianten aus der Kombination von WP2 und WP3 im Jahr 201325
Tabelle 5: Chemische und biologische Parameter des kompostierten Pilzsubstrates
Tabelle 6: Versuchsvarianten aus dem Jahr 2014. Stichprobenzahl, Anzahl an Anwendungen sowie die
Aufwandsmenge sind gegeben
Tabelle 7: Chemische und biologische Parameter der verwendeten Pilzsubstrate im Topfversuch 2014 (gemessene
Werte von der Uni Innsbruck)
Tabelle 8: Varianten des Freilandversuchs. Stichprobenzahl und Aufwandsmenge an Kompost und Präparat werden
dargestellt
Tabelle 9: Varianten des Freilandversuchs aus WP 4 Task 2. Die eingesetzte Kompostmenge und Applikationsmenge
der biologischen Bodenverbesserer werden dargestellt
Tabelle 10: Zusammensetzung der Pathogene bei der PCR-Bestimmung in den verwendeten Böden aus den
Topfversuchen 2013 und 2014 vor und nach der jeweiligen Desinfektions-maßnahme (bestimmte Werte von
Agroscope Wädenswil)
Tabelle 11: Auswertung der untersuchten Parameter in WP 2
Tabelle 12: Auswertung der untersuchten Parameter in WP 3
Tabelle 13: Multiple Paarvergleiche und homogene Untergruppen. Die Spalte "frequency" gibt die Stichprobenzahl
wieder. Bonferroni korrigiertes Signifikanzniveau: 0,0006
Tabelle 14: Beobachtungen, Minimum und Maximum sowie Mittelwert und Standardabweichung des
Triebzuwachses [cm] aus den Topfversuchen 2013
Tabelle 15: Multiple Paarvergleiche des Trockengewichts der Triebe. Bonferroni korrigiertes Signifikanzniveau:
0,0006
Tabelle 16: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und
Standardabweichung des Trockengewichts der Triebe [g] von den Topfversuchen 2013
Tabelle 17: Bildung von Untergruppen welche sich nicht signifikant voneinander unterscheiden. Korrigiertes
Signifikanzniveau: 0,0006
Tabelle 18: Stichprobenzahl, Min und Max sowie Mittelwert und Standardabweichung der Wurzeltrockenmasse
werden gezeigt44
Tabelle 19: Bildung von homogenen Untergruppen aus den paarweisen Mittelwertvergleichen. Die sterile Kontrolle
unterscheidet sich signifikant von allen anderen Gruppen (p<0,0006)
Tabelle 18: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und
Standardabweichung des Trieblängenzuwachses [cm] aus den Topfversuchen 2014
Tabelle 21: Multiple Paarvergleiche des Trockengewichts und homogene Untergruppen. Die sterile Kontrolle
unterscheidet sich signifikant von der unbehandelten Kontrolle und der Behandlung mit Ekoprop nemax (p<0,0006).
Tabelle 22: Beobachtungen/fehlende Beobachtungen, Minimum und Maximum sowie Mittelwert und
Standardabweichung des Trockengewichts der Triebe [g] aus den Topfversuchen 2014
Tabelle 23: Es werden die Stichprobenzahl, Rangsumme und der Rangmittelwert sowie die gebildeten Untergruppen
dargestellt. Korrigiertes Signifikanzniveau: 0,0006
Tabelle 24: Stichprobenzahl, Minimum und Mximum sowie Mittelwert und Standardabweichung des Frischgewichts
der Triebe [g] aus den Topfversuchen 201450
Tabelle 25: Im Trockengewicht der Wurzeln existiert zwischen der sterilen Kontrolle und der Behandlung mit
Ekoprop nemax ein signifikanter Unterschied. Korrigiertes Signifikanzniveau: 0.0006

Tabelle 26: Stichprobenzahl, Minimum und Maximum sowie Mittelwert und Standardabweichung des
Trockengewichts der Wurzeln [g] aus den Topfversuchen 201453
Tabelle 27: Die Wiederholungen der Trieblänge jeder Variante wurden auf ihre Varianzgleichheit geprüft. Die erste
Wiederholung der Variante "Strohsubstrat" unterscheidet sich von den beiden anderen Wiederholungen. Korrigiertes
Signifikanzniveau: 0,016754
Tabelle 28: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit Komposter
und organischem Material55
Tabelle 29: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit kommerziel
erhältlichen biologischen Bodenverbesserern55
Tabelle 30: Unterschiede in Trieblänge und Trockengewicht der Triebe der untersuchten Varianten mit
Kombinationen aus organischem Material und kommerziell erhältlichen Bodenverbesserern56
Tabelle 31: Multiple Paarvergleiche des Stammdurchmessers aus den Daten des Freilandversuchs. Ermittelt im
Herbst 2013. p-alpha Korrektur nach Bonferroni: 0,0033 57
Tabelle 32: Multiple Paarvergleiche und homogene Untergruppen des Trieblängenzuwachses. Die Stichprober
unterscheiden sich nicht signifikant voneinander (p>0,0033)58
Tabelle 33: Bildung von homogenen Untergruppen anhand des Stammdurchmesserzuwachses. Korrigiertes
Signifikanzniveau: 0,0033
Tabelle 34: Es gibt keine signifikanten Unterschiede im Trieblängenzuwachs zwei Jahre nach der Pflanzung
Homogene Untergruppen werden dargestellt. Korrigiertes Signifikanzniveau: 0,0033 60