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Die Preise von Feldfrüchten sind für Erzeuger und Verbraucher gleichermaßen wichtig. 
Auf der Erzeugerseite signalisieren Preise das Ausmaß an Knappheit einer Feldfrucht. Bei 
einer hohen Preiselastizität des Angebots können genaue Preisprognosen für Feldfrüchte 
den landwirtschaftlichen Betrieben in Österreich ein wertvolles Signal für den Wechsel zu 
profitableren Kulturpflanzen geben. Damit wird auch die Ernährungssicherheit Öster-
reichs gestützt. Wir wenden drei Typen von Zeitreihenmodellen auf die Erzeugerpreise 
von vier Feldfrüchten in Österreich an: Mahlweizen, Qualitätsweizen, Raps und Mais. Die 
Verwendung zusätzlicher erklärender Informationen von Terminmärkten und internatio-
nalen Organisationen verbessert die Prognosefähigkeit der Modelle. Der eingesetzte 
Prognosezyklus beruht auf dem jährlichen Rhythmus der Entscheidungen über Aussaat 
und Erntezeitpunkt für jede Feldfrucht in Österreich. Wir identifizieren die Mallows Model 
Averaging-Methode (MMA) als jene mit dem kleinsten durchschnittlichen Prognosefeh-
ler. Die Prognosegenauigkeit einer kombinierten Modellprognose aus den eingesetzten 
Modellen schlägt im Durchschnitt die individuellen MMA-Prognosen und den Preis zeit-
lich passender Futureskontrakte.  

 

     

 
  

 

 



 

Forecasting Producers Prices for Crops in 
Austria  
July 2023 

Thomas Url 

Peer Review: Serguei Kaniovski 

 

Abstract 

Prices for agricultural products are critical for producers and consumer alike. On the producer 
side higher prices signal the degree of scarcity of a crop. Given a high price elasticity of supply, 
accurate and timely price forecasts for the main crops provide Austrian farmers with a valuable 
signal to shift land use towards more profitable crops, thus supporting the security of food sup-
ply in Austria. We apply three classes of time series models to producer prices of four popular 
crops in Austria: milling wheat, quality wheat, rapeseed, and maize. Using explanatory varia-
bles from futures markets and international organisations improves the model performance. 
The proposed forecasting cycles reflect the dates of decision making in sowing and harvesting 
each crop. We find that the Mallows Model Averaging method produces the smallest average 
forecast error, but a combined model forecast ranks best among all alternatives and beats 
both, individual model forecasts and the prices of matching futures contracts.  

 

Kurzzusammenfassung 

Die Preise von Feldfrüchten sind für Erzeuger und Verbraucher gleichermaßen wichtig. Auf der 
Erzeugerseite signalisieren Preise das Ausmaß an Knappheit einer Feldfrucht. Bei einer hohen 
Preiselastizität des Angebots können genaue Preisprognosen für Feldfrüchte den landwirt-
schaftlichen Betrieben in Österreich ein wertvolles Signal für den Wechsel zu profitableren Kul-
turpflanzen geben. Damit wird auch die Ernährungssicherheit Österreichs gestützt. Wir wenden 
drei Typen von Zeitreihenmodellen auf die Erzeugerpreise von vier Feldfrüchten in Österreich 
an: Mahlweizen, Qualitätsweizen, Raps und Mais. Die Verwendung zusätzlicher erklärender In-
formationen von Terminmärkten und internationalen Organisationen verbessert die Prognose-
fähigkeit der Modelle. Der eingesetzte Prognosezyklus beruht auf dem jährlichen Rhythmus der 
Entscheidungen über Aussaat und Erntezeitpunkt für jede Feldfrucht in Österreich. Wir identifi-
zieren die Mallows Model Averaging-Methode (MMA) als jene mit dem kleinsten durchschnitt-
lichen Prognosefehler. Die Prognosegenauigkeit einer kombinierten Modellprognose aus den 
eingesetzten Modellen schlägt im Durchschnitt die individuellen MMA-Prognosen und den Preis 
zeitlich passender Futureskontrakte.  

  



–  II  – 

   

Table of Contents 
 

1. Introduction 1 

2. Data 4 

3. Models 11 
3.1 Autoregressive Integrated Moving Average (ARIMA) models 11 
3.2 Exponential Smoothing model (ETS) 12 
3.3 Mallows Model Averaging (MMA) 12 
3.4 Autoregressive Integrated Moving Average models with exogenous variables  

(ARIMAX) 13 

4. The forecasting cycle 13 

5. Results 14 

6. Conclusions 21 

7. References 23 

Appendix 24 

 

  



–  III  – 

   

Table of Figures  

Figure 1 - Long-term development of crop prices 1960-2023 4 
Figure 2 - Prices for milling wheat and quality wheat in Austria, and US-hard-red-winter wheat 7 
Figure 3 - Prices for grain maize in Austria and US-maize 7 
Figure 4 - Prices for oil rapeseed in Austria and US-soy beans 8 
Figure 5 - Timeline of the growing cycle for wheat, rapeseed and maize in the northern 

hemisphere 14 
Figure 6 - Comparison of price forecasts for milling wheat for July 2022 and 2023 from various 

models 18 
Figure 7 - Comparison of price forecasts for quality wheat for July 2022 and 2023 from various 

models 18 
Figure 8 - Comparison of price forecasts for rapeseed for July 2022 and 2023 from various 

models 19 
Figure 9 - Comparison of price forecasts for grain maize for October 2022 and 2023 from 

various models 19 

 

Table of Tables 

Table 1 - Descriptive statistics of crop prices 1960 through 2023, € per tonne 3 
Table 2 - Test on seasonal variation in international crop prices 4 
Table 3 - Description of data and sources 9 
Table 4 - Number of explanatory variables, autoregressive and moving average lags in 

optimised model 17 
Table 5 - Comparison of last available price for each crop, realised price at the end of the 

forecast horizon, and the combined forecast 20 
Table 6 - Forecasting quality of models for four forecasting rounds starting in August 2018 

through February 2022 20 

 

Table A1 - Descriptive statistics of crop prices 1960 through 2023 24 

 

 



–  1  – 

   

1. Introduction 

Prices for agricultural products are critical for producers and consumer alike because the main 
signal transmitted through prices is the degree of scarcity of the underlying agricultural prod-
uct. For farmers prices directly determine their income based on the quantity harvested. At the 
same time, they provide a signal for future profit opportunities. For consumers, on the other 
hand, food is a consumption good with a low substitution effect, i. e. the reduction in consump-
tion after a price increase will be small and there are only few opportunities to substitute to-
wards cheaper alternatives. Increasing prices will therefore redistribute income from consumers 
to farmers and commodity traders.  

Typically, the share spend by private households on food consumption will decline with increas-
ing income level, i. e. households in developed countries will spend a larger share of their con-
sumption on food as compared to households living in developing countries. Meade & Rosen 
(1996) show that low-income countries like Honduras or Tanzania in 1980 spent between 51% 
and 71% of their income on food, while households from high income countries like the USA 
(8.7%) or Israel (22.1%) spend a considerably lower share on food consumption. The develop-
ment of food spending in Austria over time is also instructive: while in the year 1954 Austrian 
households spent almost half of their consumption expenditures on food (45%), this share 
dropped to 12.1% in the most recent consumer survey from 2019/2020. Similarly to the interna-
tional comparison, high income households living in high income countries tend to spend a 
smaller share of consumption on food. Whitmore Schanzenbach et al. (2016) show this by using 
the consumption bundles of US-households in 2014. Households belonging to the first income 
quintile spent slightly less than 16% of consumption expenditures on food, while those in the fifth 
income quintile spent some 11% on food. Despite the falling share in total consumption spend-
ing on food, US-high-income households spent roughly three times as much on food as com-
pared to low-income households.  

Similarly, the share of agricultural value added in the total value added of an economy de-
creases lower over time because growth will be concentrated in new products and services 
which happen to be provided by manufacturing firms, service providers, and the public sector, 
rather than farmers. This general pattern suggests that fluctuations in agricultural prices have 
higher welfare effects in low-income countries. Within a high-income country variation in agri-
cultural prices will affect low-income households more strongly than others. This aspect high-
lights the distributional consequences of higher agricultural prices at the national level.  

Most agricultural commodities are homogenous goods, i. e. the differences with respect to 
product quality and processing characteristics are small and can be easily measured. The pro-
tein content of wheat is a good example for the degree of homogeneity. Milling wheat is de-
fined by a minimum protein content of 12.5% while quality wheat has a minimum of 14%. Due 
to the extensive international trade in agricultural products, prices formed on local markets are 
closely linked to what happens in important producer countries. Fluctuations in weather con-
ditions, the effects of natural hazards or of political conflict will spread from large producer 
countries to the world market. The development of energy prices will also impact on agricul-
tural prices because some farm inputs are energy intensive. Small cross border deviations in 
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crop prices may still arise from conditions of delivery and the costs of transportation. For exam-
ple, US-wheat prices in the World Bank’s Pinksheet define financial delivery conditions like fob 
(free on board) or cif (cost, insurance and freight) and the relevant ports for shipment. This kind 
of homogeneity implies that the supply of crops in a particular country can quickly respond to 
local price signals by redirecting international trade.  

Figure 1 shows that prices for the main crops are stable in the long run, when measured in euro 
per tonne. Some large ups and downs associated with energy price hikes and recently, the 
attack of Russia on Ukraine, are also visible, but the prices for the three crops tend to return to 
stable means even after substantial gains. The broad span resulting from these large swings 
creates a difficult environment for forecasters. For example, the minimum price for wheat rec-
orded between 1960 and 2023 was 86 € per tonne in November 1990 and the maximum was 
494 € per tonne in May 2022, cf. Table 1. The dates of recording the minimum or maximum price 
do not fall into specific periods. For example, the price for soybeans had its minimum in October 
1960 and the maximum in June 1973 while maize was cheapest in March 1987 and recorded 
its highest price in October 2022. Appendix 

Table A1 in the appendix shows the statistics by decade. The period from 2019 onwards ap-
pears particularly volatile. If crop prices are measured in US-dollar instead of euro, the long-
term development is slightly different. Due to the devaluation of the dollar vis-a-vis the euro a 
long run upward trend in crop prices emerges.  

Given that the demand for food has increased substantially since 1960, the long-run stability of 
commodity prices requires a high enough price elasticity of supply. The world population 
started at 3 billion people in 1960 and more than doubled towards 8 billion in 2023 (UN-DESA, 
population division). Per-capita GDP measured in PPP in emerging markets increased by a fac-
tor of 8.8 between 1980 and 2022 (IMF-datamapper), and the switch to biofuels added further 
demand during the last decade. Higher real demand has been met by an expansion of supply 
due to further cropland being put into use and by applying more efficient agricultural tech-
niques. Currently, commodity markets are strongly affected by Russia’s attack on Ukraine. Both 
countries are among the most important crop exporting countries in the world. Exports by 
Ukraine were effectively blocked from the world market in March 2022, creating a surge in crop 
prices (Figure 1). After an agreement to allow bulk shipping from and to Odessa has been 
brokered by Turkey on June 6th 2022, prices started to edge down. By May 2023, however, crop 
prices remain elevated.  

Figure 1 also shows that none of the crop prices shows a strong seasonal pattern, e. g. due to 
a lower price during harvest. Table 2 presents the autocorrelation coefficients for the first differ-
ence of the crop prices at lags corresponding to the seasonal frequencies of a monthly time 
series. The values are close to zero. Only for wheat and soybeans at lag 3 we find values signif-
icantly different from zero.  

Austria as a high-income country should be less affected by large swings in crop prices. Still 
such swings may have negative welfare consequences resulting either from reduced accessi-
bility of international crop markets by Austrian importers or by high foreign demand absorbing 
more of Austria’s current production or its stocks. Accurate price forecasts for the main crops 
provide Austrian farmers with a valuable signal to shift land use towards more profitable crops 
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and thus they will also contribute to food supply security in Austria, which was also the topic of 
a recent analysis by the Austrian Court of Audit. Rechnungshof (2023) documents that the de-
gree of self-sufficiency in Austria varies across agricultural products and over time (2015-2020). 
For grain the degree fluctuates between 86% and 95% of domestic use; for oilseeds the degree 
is much lower varying between 45% and 53%.  

International organisations and the United States Department for Agriculture (USDA) already 
make quantity and price forecasts for many internationally traded crops1). The forecasts are 
usually published as the average price over the year and some are updated twice a year. The 
OECD-FAO uses a structural partial equilibrium model (Aglink-Cosimo) to forecast produced 
and consumed quantities for 31 individual countries and several regional modules which in-
clude the remaining countries (OECD-FAO, 2023B). The model covers over 90 commodities and 
computes 39 world market-clearing prices. In contrast to this structural approach USDA uses a 
set of parsimonious time series models to forecast producer prices (MacLachlan et al., 2022). 
The USDA switched from more structured pass-through models for individual prices to ARIMA 
based time series models (Enders, 2010). Pass-through models use the information from input 
prices in agricultural production to forecast the development of the respective output price. 
MacLachlan et al. (2022) present results indicating a better forecasting performance for time 
series models; the authors also emphasise the advantage of ARIMA-models in computing con-
fidence intervals.  

In this study we will apply three classes of time series models to forecast four Austrian producer 
prices for crops. The producer prices encompass milling wheat, quality wheat, rapeseed, and 
maize. The following section will present the data. Then we give a short overview about the 
time series models applied and motivate the forecasting cycle chosen for each crop. After 
estimating the models and using them to compute real-time ex-ante forecasts for the years 
2018 through 2022, we can present a first impression of the forecasting performance. The final 
section concludes.  

Table 1 - Descriptive statistics of crop prices 1960 through 2023, € per tonne 
 

Wheat Soybean Maize 

Mean 160.4 285.8 125.8 

Std. Deviation 58.2 96.4 46.4 

Min 85.6 166.3 61.8 

Max 493.7 716.3 349.6 

Span 408.1 550.0 287.9 

Source: OECD, Worldbank (Pinksheet). Monthly average price converted to Euro-ATS from January 1960 through May 
2023. See Appendix 

Table A1 for a division of the total sample by decades.  

 

1)  OECD-FAO (2023A), World Bank Group (2023), and USDA https://www.ers.usda.gov/topics/crops/.  
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Table 2 - Test on seasonal variation in international crop prices 
  

Wheat Soybean Maize 

Autocorrelation at lag 3 – 0.15 – 0.07 – 0.02  
6 0.05 – 0.06 – 0.04  
9 – 0.02 0.02 – 0.02 

  12 – 0.04 – 0.05 0.01 

Source: Own calculations. – Autocorrelation coefficients for first differences of crop prices based on 760 observations. 

Figure 1 - Long-term development of crop prices 1960-2023 

 
Source: OECD, World Bank (Pinksheet) prices are converted to Euro-ATS. 

2. Data 

We forecast Austrian crop producer prices as published by Statistics Austria on a monthly fre-
quency (cf. Table 3 at the end of this section) and presented in Figure 2 through Figure 4. Ad-
ditionally, to the Austrian producer prices, each Figure also shows the corresponding US-price 
transferred from US-dollar into euro-ATS. Due to months without trading activity the Austrian 
time series for rapeseed frequently has gaps with missing data. We fill the missing observations 
by using growth rates from the respective international time series.  

Wheat and maize prices appear to remain in a stable band between January 1999 and mid-
2010. Following the business cycle upturn after the financial market crisis, grain prices became 
more volatile and the average producer price in Austria was about 50% higher than before. 
The international acceleration in crop prices during 2021 was also noticeable in Austria and 
received further stimulus, when Russia attacked Ukraine in March 2022 and blocked shipping 
traffic from and to Ukrainian Black Sea ports. After an agreement to allow bulk shipping from 
and to Odessa has been brokered by Turkey on June 6th 2022, prices started to edge down. By 
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May 2023, however, crop prices still remain elevated. Over time, the dynamics of Austrian pro-
ducer prices moved closer to the international prices of similar crops. At the end of the sample 
the matching of price movements is already very close, best seen in Figure 3 for maize. Figure 
2 through Figure 4 also show that the year 2019 is the last more or less regular year in the sample, 
afterwards a steep increase in prices occurred until June 2022, when prices started to drop. 
The wild and sudden swings in crop prices over this period will provide a challenging sample 
for ex-ante forecasting tests.  

Further leading indicators used to forecast Austrian producer prices are the prices of crop fu-
tures with varying maturity, featuring delivery dates between 1 month to 12 months ahead. 
Futures are forward contracts being initiated at date t and executed at a subsequent time t+h, 
i. e. the delivery date. The terms of the contract fulfilment are fixed in advance, e. g. the price 
at which a commodity is exchanged is fixed at the time of initial contracting. Futures have 
several advantages: they are traded on organised exchanges under standardised contract 
terms. The fulfilment of a future is guaranteed by a clearinghouse and supervised by an official 
authority. Contract partners are subject to margin payments to ensure fulfilment of the con-
tract. Futures are useful because they allow to fix the price of a commodity – which is delivered 
in the future – in advance, i. e. they resolve the uncertainty about the future price of a crop. 
From the perspective of a farmer, the price for the future harvest can be locked in at the time 
of sowing, from the perspective of a food manufacturer the price of an important input can 
be locked in, when contracts with wholesalers or retailers are signed.  

Three international institutions collect data relevant for food security. The World Bank monitors 
information on price developments and publishes data regularly in its Commodity Markets Out-
look. The World Bank collects long-term time series in its Pinksheet. The Commodity Markets 
Outlook is currently published twice a year in April and October.  

The Food and Agriculture Organisation (FAO) belongs to the institutions set up by the United 
Nations. The FAO provides information on agricultural stress indicators for various crops, pub-
lished 3 times a month. The stress indicators combine satellite data on precipitation and tem-
perature with theoretical plant growth models to estimate the amount of stress on a fine grid 
across all members of the United Nations. The FAO defines stress as the share of area with a 
Mean Vegetation Health Index below 35 in percent of the total area under cultivation. We 
aggregate the agricultural stress level for crop i in country c in month t, ASIict, of the 20 biggest 
producers of wheat, rapeseed, and maize into three crop specific monthly stress indicators. 
Monthly values for ASI correspond to the average of the three measurements within the re-
spective month. The computation uses the share of country c in the total harvest of crop i 
throughout the 20 biggest producer countries in 2021 as weights, ωic:  

𝐴𝑆𝐼௜௧ = ∑ 𝜔௜௖𝐴𝑆𝐼௜௖௧
ଶ଴
௖ୀଵ  . 

All international data contain comparable values for wheat and maize but no information on 
rapeseed. As a substitute we use the information provided for soybeans, cf. Figure 4 to get an 
impression about the relevance of soybean price data from the World Bank (converted into 
euro-ATS) for Austrian producer prices of rapeseed.  
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Finally, the Organisation for Economic Cooperation and Development (OECD) teams up with 
the FAO to produce the Agriculture Outlook, including forecasts of supply and demand for 
several crops, meat, and fish. The expected quantities produced, consumed, traded across 
borders, and stored at the end of the year are published for individual countries and at the 
world level in the annual report published every July. We use the supply and demand data at 
the world level to compute indicators of scarcity for each crop i. The indicators signal the ratio 
of production to consumption:  

𝑃𝐶௜௧ =
௣௥௢ௗ௨௖௧௜௢௡೔೟

௖௢௡௦௨௠௣௧௜௢௡೔೟
 , 

the ratio of the stock at the end of the previous year to the consumption of the current year:  

𝑆𝐶௜௧ =
௘௡ௗ ௢௙ ௬௘௔௥ ௦௧௢௖௞௧೔(೟షభ)

௖௢௡௦௨௠௣௧௜௢௡೔೟
 , 

and the ratio of stocks carried over from the previous period plus the production of the current 
period to the consumption of the current period:  

𝑆𝑃𝐶௜௧ =
௘௡ௗ ௢௙ ௬௘௔௥ ௦௧௢௖௞௧೔(೟షభ)ା௣௥௢ௗ௨௖௧௜௢ ೔೟

௖௢௡௦௨௠௣௧௜௢௡೔೟
 . 

All quantity forecasts by OECD-FAO are at the annual level. Because the price forecasts are 
based on monthly data, we interpolate the low frequency annual data from the Agriculture 
Outlook into high frequency monthly data by fitting a local quadratic polynomial for each 
observation of the low frequency series. Then this polynomial is used to fill in all observations of 
the high frequency series associated within the period. The quadratic polynomial is formed by 
taking sets of three adjacent points from the source series and fitting a quadratic such that the 
average of the high frequency observations over 12 months matches the low frequency data 
from the Agriculture Outlook. For most points, one point before and one point after the period 
currently being interpolated are used to provide the three points. The OECD-FAO forecasts 
extend up to eight years into the future, therefore this procedure avoids an end point problem.  
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Figure 2 - Prices for milling wheat and quality wheat in Austria, and US-hard-red-winter wheat 

 
Source: Statistics Austria, World Bank (Pinksheet), OECD. – Monthly prices in euro per tonne, US-Hard-Red-Winter-
Wheat in USD per tonne f.o.b. at US-Gulf ports converted to Euro-ATS. 

Figure 3 - Prices for grain maize in Austria and US-maize 

 
Source: Statistics Austria, World Bank (Pinksheet), OECD. – Monthly prices in euro per tonne, US-Maize (No. 2 yellow) 
USD per tonne f.o.b. at US-Gulf ports converted to Euro-ATS. 
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Figure 4 - Prices for oil rapeseed in Austria and US-soy beans 

 
Source: Statistics Austria, World Bank, OECD. – Monthly prices in Euro per tonne, gaps in timeseries due to lack of trad-
ing activity, U.S Gulf Yellow Soybean No. 2, CIF Rotterdam in USD per tonne converted to Euro-ATS. 
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Table 3 - Description of data and sources 

Variable Unit Details Source 

Price for grain maize 
€ p.  

tonne 
 Statistics Austria 

Price for US-maize  
(yellow No. 2) 

USD p. 
tonne 

f.o.b. US Gulf ports World Bank Pinksheet 

Price for oil rapeseed 
€ p.  

tonne 
 Statistics Austria 

Price for US-soybeans 
(yellow No. 2) 

USD p. 
tonne 

cif. Rotterdam World Bank Pinksheet 

Price for milling wheat 
€ p.  

tonne 
Protein min. 12,5% Statistics Austria 

Price for quality wheat 
€ p.  

tonne 
Protein min. 14% Statistics Austria 

Price for US-hard-red-winter 
wheat 

USD p. 
tonne 

Export price delivered at the US Gulf 
port for prompt or 30 days shipment 

World Bank Pinksheet 

Price for maize 
USD p. 
tonne 

Commodity Market Outlook (CMO), 
various issues 

World Bank 

Price for soybeans 
USD p. 
tonne 

Commodity Market Outlook (CMO), 
various issues 

World Bank 

Price for wheat 
USD p. 
tonne 

Commodity Market Outlook (CMO), 
various issues 

World Bank 

Exchange rate  
USD per  

€-ATS 
 OECD 

Price for corn-future 
€ p.  

tonne 
Euronext Paris Close, various maturities Macrobond 

Price for rapeseed-future 
€ p.  

tonne 
Euronext Paris Close, various maturities Macrobond 

Price for wheat-future, 
milling wheat No.2 

€ p.  
tonne 

Euronext Paris Close, various maturities Macrobond 

Maize Agricultural Stress 
Index (Season 1) 

in percent 

Stressed area in 20 biggest maize 
producing countries in percent of total 
cropland, aggregated by share of 
country in production, monthly mean. 
Stress is defined as percent of area with 
Mean Vegetation health index below 
35.  

Own computation based on FAO 
Agricultural Stress Index System (ASIS), 
http://www.fao.org/giews/earthobservation/

Rapeseed Agricultural 
Stress Index (Season 1) 

in percent 

Stressed area in 20 biggest rapeseed 
producing countries in percent of total 
cropland, aggregated by share of 
country in production, monthly mean. 
Stress is defined as percent of area with 
Mean Vegetation health index below 
35.  

Own computation based on FAO 
Agricultural Stress Index System (ASIS), 
http://www.fao.org/giews/earthobservation/

Wheat Agricultural Stress 
Index (Season 1) 

in percent 

Stressed area in 20 biggest wheat 
producing countries in percent of total 
cropland, aggregated by share of 
country in production, monthly mean. 
Stress is defined as percent of area with 
Mean Vegetation health index below 
35.  

Own computation based on FAO 
Agricultural Stress Index System (ASIS),  
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Table 3 - Description of data and sources (continued) 

Variable Unit Details Source 

Production of maize,  
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Consumption of maize, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Ending stock of maize,  
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Production of oil seeds, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Consumption of oil seeds, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Ending stock of oil seeds, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Production of wheat,  
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Consumption of wheat, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 

Ending stock of wheat, 
world 

tonnes 
OECD-FAO Agriculture Outlook,  
estimate from various issues 

Macrobond 
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3. Models 

We use three classes of time series models to forecast producer prices for crops in Austria. The 
time series models encompass Autoregressive Integrated Moving Average (ARIMA) models, 
Exponential Smoothing (ETS) models, the Mallows Model Average (MMA) method, and ARIMAX 
models where explanatory variables provided either by capital markets or by international or-
ganisations are added to ARIMA models.  

Univariate time series models assume that the future development of a variable can be pre-
dicted by using only information about the dynamic behaviour of a variable over the past. This 
approach uses therefore only information from the past development of the crop price under 
consideration to make out-of-sample forecasts. Autoregressive Integrated Moving Average 
(ARIMA) and Exponential Smoothing (ETS) models belong to this class. Another model class al-
lowing for the use of additional information from other explanatory variables is the Mallows 
Model Averaging (MMA) method. The MMA method either selects the optimal model or pro-
duces the forecast from a combination of several models. The MMA method can incorporate 
leading indicators into an autoregressive model, but it uses only past observations of the lead-
ing indicators to compute the forecast.  

Finally, single equation regression models can use exogenous information on the expected fu-
ture development of the respective crop price. This information can be provided by financial 
markets (futures prices) or alternatively by international organisations. For example, the out-
come of the comprehensive procedure applied by the OECD-FAO and the World Bank to fore-
cast crop prices and quantities may be helpful to forecast the future development of producer 
prices in Austria. For this purpose, we complement ARIMA models, which are good on captur-
ing the dynamics of a time series, with explanatory variables. Pokorný & Froněk (2021) provide 
evidence for a higher predictive performance of some OECD-FAO crop price forecasts com-
pared to naïve extrapolations of the last observed value.  

3.1 Autoregressive Integrated Moving Average (ARIMA) models  

Univariate ARIMA models are based on the theory of stochastic linear difference equations. 
The model parameters are estimated from past observations of the target variable, in our case 
the respective crop price. The stability conditions for these models require that the target vari-
able follows a stationary process, i. e. the variable always converges back to a stable mean 
and the covariance structure between pairs of observations remains constant over time. The 
second condition excludes bouts of high volatility in the time series. If these conditions are met, 
the parameters can be estimated by maximum likelihood and the model selection is based on 
minimising an information criterion. The information criterion for a model specification will be-
come smaller if the model fits better to the data, i. e. the sum of squared estimation errors (sum 
of squared residuals) within the estimation sample is smaller. On the other hand, a penalty term 
for the number of parameters to be estimated will favour parsimonious models over models 
including more autoregressive and moving average terms. We use the Bayesian Information 
Criterion (BIC) for model selection because it poses a higher penalty on additional regular and 
seasonal autoregressive or moving average terms (Enders, 2010).  



–  12  – 

   

3.2 Exponential Smoothing model (ETS) 

Exponential smoothing models belong to a class of univariate time series models not requiring 
a constant mean over time, rather they adjust slowly to changes in the mean of a time series 
because each forecast is a weighted average of past observations and the weights decay 
exponentially as the observation is more distant from the last observed value. The simplest ETS 
model is the naïve forecast based on the last realised value of a variable. In this special case 
all weight is given to the last observation, i. e. it is the only observation that matters for forecast-
ing, while all other previous observations for the crop price are ignored. If we attach larger 
weights to the more recent observations and smaller weights to the more distant observations, 
the forecast is a weighted average of past observations. More complex ETS models distinguish 
between one or more components of a time series, i. e. a level, trend or seasonal component, 
and the way how these components are aggregated in the forecast equation (additive, mul-
tiplicative) (Hyndman & Athanasopoulos, 2014). Hyndman et al. (2002) put the ETS model into 
a state space form and show how to find the optimal model according to the Bayesian infor-
mation criterion (BIC). Again, the optimal model structure will be determined by the best fit 
within the estimation sample, i. e. the sum of squared residuals.  

3.3 Mallows Model Averaging (MMA) 

The univariate ARIMA model uses only the dynamics observed in the past development of the 
target variable for a forecast. Richer forecasting models include additional leading indicators 
which carry a signal about the future development of the target variable. If a leading indicator 
carries a signal on future values of the target variable, model forecast from the richer model 
are expected to outperform forecasts based on univariate ARIMA models. The actual set of 
leading indicators and the number of lags for the target variable as well as the leading indica-
tors, however, are unknown and therefore models with all possible combinations of potential 
lags of leading indicators with the target variable must be estimated and compared. Because 
the leading indicators are observable at the time when the forecast is made, we do not need 
forecasts of them, i. e. only past and current observations are necessary for forecasting.  

Hansen’s Mallows Model Averaging method searches across all combinations of autoregres-
sive terms of the target variable and the leading indicators. The number of potential models is 
2L(1+M), where L is the number of all possible combinations of autoregressive lags and M is the 
number of all possible combination of leading indicators and their lags. The model is optimised 
for the length of the forecast horizon (h), which is h=12 months in the case of wheat and rape-
seed and h=9 months in the case of maize. The Mallows Model Averaging method computes 
quasi out-of-sample forecasts for each observation in the sample by applying a leave-one-out 
cross validation technique. This mimics a forecasting situation more closely than the in-sample 
estimation errors used to compute the BIC criterion. We restrict the number of possible lags in 
the target variable and the leading indicators to L=6. The optimal model selected by the leave-
one-out cross validation approach provides the MMA-selected forecast. Additionally, we use 
the MMA-combined forecast, which is based on all potential models, but gives forecasts from 
sub-optimal models lower weights (Hansen, 2007, 2008).  
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We use two sets of variables as potential leading indicators. First a set of futures prices of each 
crop with contract length of 1 through 6 months ahead from the last observation in the sample. 
The market based leading indicators of future crop prices should reflect all information availa-
ble among traders in each spot and futures market. The alternative set of leading indicators 
encompasses information provided by institutional forecasters, like the OECD-FAO and the 
World Bank. These institutions regularly make quantity and dollar price forecasts for the most 
important crops. The quantity indicators cover the production, the consumption, and the end 
of period stock for each crop in our sample. This allows for the computation of indicators sig-
nalling future scarcity in each market. The price forecasts in US-dollar will be converted into 
euro by using the current forecast of the dollar per euro exchange rate made by WIFO each 
quarter. For details of the data cf. Table 3 in the data section.  

3.4 Autoregressive Integrated Moving Average models with exogenous variables 
(ARIMAX)  

Finally, we add leading indicators directly into optimised ARIMA models. This approach is very 
similar to the ARIMA modelling procedure and selects in a first step the optimal lag structure of 
the explanatory variables by the magnitude of the cross-correlation coefficients between the 
target variable and the leading indicators. In a second step, we search for the optimal ARIMAX 
model according to the Bayesian Information Criterion. As leading indicators, we use a com-
bined set of futures prices and the variables provided by international organisations. These var-
iables encompass expected agricultural prices and quantities. Additionally, we add the FAO 
agricultural stress indicators into the models, which also have a leading characteristic: When 
sowing starts in Austria, the first season in the southern hemisphere is close to its end. Given the 
leading indicators, the model with the lowest BIC is chosen. In a second step we re-estimate 
the optimised model and drop autoregressive, moving average terms, and leading indicators 
according to t-tests.  

4. The forecasting cycle 

The forecasting cycle is determined by the growing season of each crop in Austria. For exam-
ple, wheat and rapeseed are planted in late fall, which implies that farmers have to decide on 
the crop they will sow by August. Both crops will grow over the following winter and spring 
throughout June and July of the next year, when farmers will harvest and sell their crop at the 
prevailing price. A price forecast for wheat and rapeseed for July of the next year can add 
valuable information to the information set of farmers if it is available in August, when the sow-
ing decision is due. This gives rise to a forecast horizon of 12 months based on information avail-
able at the end of July. The forecast should be published by mid-August and reach out to the 
price in July of the next year, cf. Figure 5.  

For maize the growing season deviates strongly from this pattern due to a shorter growing pe-
riod. The decision to plant maize will be made in February and the harvesting season for maize 
starts in September of the same year, thus farmers will be interested in the expected price of 
maize in October, giving rise to a forecast horizon of 9 months based on information available 
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at the end of January. The price forecast should be published by mid-February and reaching 
out to October of the current year.  

This peculiar forecast cycle reduces the number of useful forecasts in a comparison of real-time 
ex-ante forecasting precision of individual models to one forecast per year, i. e. a late summer 
round for wheat and rapeseed and a winter round for maize. Given the need for a training 
sample and the missing data from Commodity Market Outlooks published between 2014 and 
2017, this precludes a model selection based on statistical tests, rather we will present the results 
from forecasts starting in late summer 2018 for the price of wheat and rapeseed in July 2019, 
leaving a training sample of monthly data from January 2000 through July 2018.  

The availability of institutional forecasts is also restricted by the forecasting cycle. For example, 
the forecast in August 2018 can use real time price forecasts for wheat and rapeseed published 
by the World Bank in April 2018; these forecasts would have covered the period 2019 through 
2025. Every forecasting round after mid-summer 2018 will use a correspondingly younger World 
Bank outlook, e. g. the maize price forecast in February 2019 will use the October 2018 World 
Bank outlook. A similar schedule holds for the quantity forecasts by OECD-FAO which are pub-
lished every year in July. Consequently, the production, consumption, and end of year stock 
forecasts for crops from July can be used for the following two forecasting rounds in August 
and February.  

Figure 5 - Timeline of the growing cycle for wheat, rapeseed and maize in the northern 
hemisphere 

 
Note: The southern hemisphere’s growing season is shifted by 6 months. 

5. Results 

The optimisation algorithm selects for each crop a separate forecasting model and produces 
a dynamic forecast starting in T up to the end of the forecasting horizon h. We compare the 
model forecasts to a naïve no-change forecast, i. e. we use the last observation from period T 
as the forecast for T+h. Alternatively, we use the price of 9- or 12-months ahead futures as a 
forecast based on current expectations of participants in crop market trading. For the ARIMA, 
the MMA, and the ARIMAX models Table 4 provides a simple overview on the final model struc-
tures in terms of the number of autoregressive lags (p), the differencing (d), the moving aver-
age lags (q), and the seasonal equivalents to these terms (P, D, Q). For the models also using 
leading indicators Table 4 also shows the number of leading indicators. The leading indicators 
are either prices from financial markets or variables published by international institutions.  

Wheat, Rapeseed Decision Sowing Harvest and selling at T+12

Maize Decision Sowing Harvest and selling at T+9

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
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A short list of the explanatory variables for each crop conveys the usefulness of additional in-
formation in the forecasting procedure. The final models using leading indicators for milling 
wheat include the price of a 6-month ahead future, the production-to-consumption ratio, and 
the expected commodity price by the World Bank. The final models for quality wheat use these 
variables and additionally include the wheat stress indicator. The models for the price of rape-
seed include the prices of 3- and 6-months ahead futures, the rapeseed stress indicator, and 
the expected commodity price from the World Bank. One model also uses the SPC for rape-
seed. The final models for the price for maize depend on the price of 6-months ahead futures, 
the commodity price outlook by the World Bank, and the SPC for maize. Typically, the final 
models of the MMA method are very parsimonious at the 9- and the 12-months horizon, using 
mostly 1 lag of the target variable and one explanatory variable. The ARIMAX models on the 
other side use between two and four leading indicators.  

The ex-ante forecasting cycle starts in August 2018 with a forecast for the prices of milling 
wheat, quality wheat, and rapeseed in July 2019. The next round is in February 2019 with a 
forecast for the price for maize in October 2019. The last forecasting round starts in February 
2022 and predicts the price of maize in October 2022. For all these forecast horizons we use 
only information available in the month before the publication of the forecast and compare 
the predicted with the realised value. The difference between both values is the forecast error 
for each individual model. Our forecasting cycle allows the computation of four forecast errors 
for each crop and each model, which clearly falls short of providing enough observations to 
apply serious forecasting tests. Instead, we provide a graphical analysis of forecasts, and pre-
sent a model ranking according to the root mean squared forecasting errors (RMSE).  

The years 2021 and 2022 have been particularly hard for forecasters because agricultural prices 
started to increase during spring 2021 and got a strong boost with the start of the attack by 
Russia on Ukraine. Figure 6 to Figure 9 show the results of the last two forecasting rounds in terms 
of the dynamic forecasting paths and their final value. The forecasts are compared to the 
realised prices until May 2023, because the values for July and October 2023 are not yet avail-
able. The model forecasts tend to miss the upswing in crop prices in 2021, the only exception 
being the price of rapeseed, for which many models expect a higher price 12-months ahead 
as compared to the last observation from July 2021, cf. Table 5. On the other hand, most mod-
els expect prices to decline from July 2022 onwards, but the extent will be probably underesti-
mated. The tentative impression from the graphical analysis can be corroborated by compu-
ting real time forecasting errors. The difference between realised values and the model fore-
casts are the 9- and 12-step ahead forecast errors, which can be squared and added to 
achieve a RMSE. This indicator is smaller if a model produces more accurate forecasts, and it 
punishes large forecast errors more strongly. We compare the sum of squared forecast errors 
for each model with two popular naïve forecasts: the last observed price and the price of a 9- 
or 12-month ahead future in period T. Table 6 presents the RMSE for each crop and each model 
and the rank achieved by each model for individual crops. The last column of Table 6 shows 
the sum of ranks over the four crops.  

Surprisingly, the forecasts provided by the prices of 9- or 12-months ahead futures produce 
some of the highest RMSE. The ARIMA-model using levels and the ETS-model show a 



–  16  – 

   

comparable forecasting performance. On the other hand, the models selected by the MMA 
method, either based on capital market prices or based on institutional forecasts, are ranked 
among the top performing models; just the ARIMA-model using annual growth models comes 
close to this ranking. Relative to the standard deviation of the price for milling wheat, the lower 
ranked models have a RMSE which is around 2.2-times the standard deviation, while the MMA-
based Models show a RMSE 1.7-times the standard deviation. For quality wheat the RMSE of 
the lower ranked models is 2.6-times the standard deviation, while the MMA-based models 
have the same precision as for milling wheat. In general, the forecast precision for soybeans is 
lower: lower ranked models produce a RMSE being 4.4-times the standard deviation, while the 
MMA-based models show a RMSE of 2.5-times the standard deviation. The forecasting models 
for maize produce the highest precision and the difference between lowest ranked (0.8-times) 
and MMA-based models (0.6-times) is small.  

A view on the model ranking for individual crops supports the hypothesis derived from figures 
Figure 6 through Figure 9: we cannot identify a single optimal forecast model for crop prices. 
Therefore, we compute a combined forecast as the mean of all forecasts, except the two 
worst performing models: the ARIMA-model using levels and the ETS-model. This combined fore-
cast stands out as the most accurate model for quality wheat and rapeseed, it ranks third for 
wheat and sixth for maize. The good performance of the combined forecast results from the 
different capabilities of each model to process specific aspects of the recent dynamics of the 
target variable or the predictive power of leading indicators. For example, using the combined 
forecast for rapeseed brings a reduction in the root mean squared forecast error (against the 
naïve forecast and the 12-month futures price) by roughly 50 percent, for quality wheat the 
reduction is 30%, and for wheat it is 24%. With respect to maize, the reduction in the RMSE in 
comparison to 9-months futures prices is 25%. Only with respect to the no change forecast for 
maize a combined model forecast shows no advantage.  

 



–  17  – 

   

Table 4 - Number of explanatory variables, autoregressive and moving average lags in 
optimised model 

 
p d q P D Q 

Explanatory 
Variables. 

 Milling wheat 

ARIMA, level 0 1 0 0 0 0 - 

ARIMA, annual growth rate 1 0 0 0 0 0 - 

MMA based on futures 1 1 - - - - 1 

MMA based on inst. forecasts 1 1 - - - - 1 

ARIMAX, level 4 0 0 0 0 0 2 

ARIMAX, annual growth rate 3 0 0 0 0 0 3 
 Quality wheat 

ARIMA, level 0 1 0 0 0 1(12) V 

ARIMA, annual growth rate 1 0 0 0 0 0 - 

MMA based on futures 2 1 - - - - 1 

MMA based on inst. forecasts 1 1 - - - - 1 

ARIMAX, level 3 0 0 0 0 0 4 

ARIMAX, annual growth rate 3 0 2 0 0 0 2 
 Rapeseed 

ARIMA, level 1 1 0 0 0 2(12) - 

ARIMA, annual growth rate 2 0 0 0 0 0 - 

MMA based on futures 1 1 - - - - 1 

MMA based on inst. forecasts 1 1 - - - - 1 

ARIMAX, level 3 0 4 0 0 0 2 

ARIMAX, annual growth rate 3 0 1 0 0 0 2 
 Maize 

ARIMA, level 3 1 0 0 0 1(12) - 

ARIMA, annual growth rate 3 0 0 0 0 0 - 

MMA based on futures 2 1 - - - - 1 

MMA based on inst. forecasts 2 1 - - - - 1 

ARIMAX, level 1 0 2 0 0 0 3 

ARIMAX, annual growth rate 3 0 0 0 0 0 2 

Source: Own calculations. – See Section 2 for a description of individual models. p: number of autoregressive lags, d: 
number of differences, q: number of moving average lags. P, D and Q represent the seasonal equivalents of the 
terms p, d and q.  
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Figure 6 - Comparison of price forecasts for milling wheat for July 2022 and 2023 from various 
models 

 
Source: Statistics Austria, Macrobond, own calculations. – Dots indicate the value at the final month of the forecast 
rounds in 2021 and 2022. ARIMA: Autoregressive Integrated Moving Average Model, ETS: Exponential Smoothing 
Modell, MMAs: Mallow Model Average selected using futures, MMAc Mallow Model Average combined using fu-
tures, STR: ARIMAX using institutional forecasts. The extension _l indicates a models based on levels and the extension 
_d indicates a model based on annual differences. 

Figure 7 - Comparison of price forecasts for quality wheat for July 2022 and 2023 from various 
models 

 
Source: Statistics Austria, Macrobond, own calculations. – Dots indicate the value at the final month of the forecast 
rounds in 2021 and 2022. ARIMA: Autoregressive Integrated Moving Average Model, ETS: Exponential Smoothing 
Modell, MMAs: Mallow Model Average selected using futures, MMAc Mallow Model Average combined using fu-
tures, STR: ARIMAX using institutional forecasts. The extension _l indicates a models based on levels and the extension 
_d indicates a model based on annual differences. 
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Figure 8 - Comparison of price forecasts for rapeseed for July 2022 and 2023 from various 
models 

 
Source: Statistics Austria, Macrobond, own calculations. – Dots indicate the value at the final month of the forecast 
rounds in 2021 and 2022. ARIMA: Autoregressive Integrated Moving Average Model, ETS: Exponential Smoothing 
Modell, MMAs: Mallow Model Average selected using futures, MMAc Mallow Model Average combined using fu-
tures, STR: ARIMAX using institutional forecasts. The extension _l indicates a models based on levels and the extension 
_d indicates a model based on annual differences. 

Figure 9 - Comparison of price forecasts for grain maize for October 2022 and 2023 from 
various models 

 
Source: Statistics Austria, Macrobond, own calculations. – Dots indicate the value at the final month for the forecast 
rounds in 2021 and 2022. ARIMA: Autoregressive Integrated Moving Average Model, ETS: Exponential Smoothing 
Modell, MMAs: Mallow Model Average selected using futures, MMAc Mallow Model Average combined using fu-
tures, STR: ARIMAX using institutional forecasts. The extension _l indicates a models based on levels and the extension 
_d indicates a model based on annual differences. 
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Table 5 - Comparison of last available price for each crop, realised price at the end of the 
forecast horizon, and the combined forecast 

Forecasting round August 
2021 € per tonne  change to … in € 

 mean last obs. realised 
combined 

forecast  realised combined forecast 

Milling wheat 149.9 232.1 293.5 214.7 61.4 – 17.4 

Quality wheat 163.7 255.0 338.1 228.2 83.1 – 26.8 

Rapeseed 310.4 481.7 663.0 568.8 181.3 87.1 

Maize 150.9 243.1 303.8 243.9 60.7 0.9 
  

Forecasting round August 
2022 € per tonne change to … in € 

 
mean last obs. realised1) 

combined 
forecast  realised1) combined forecast 

Milling wheat 271.4 293.5 226.3 270.6 – 67.3 – 22.9 

Quality wheat 286.4 338.1 229.0 311.0 – 109.0 – 27.0 

Rapeseed 766.9 663.0 449.2 809.0 – 213.7 146.0 

Maize 265.2 283.6 272.9 273.4  – 10.7 – 10.2 

Source: Statistics Austria, World Bank, Macrobond, own calculations. – Mean from January 1999 through May 2023. 
Last observation corresponds to July of the previous year for wheat, quality wheat, and rapeseed; it corresponds to 
January of the current year for maize. - 1) Preliminary value based on most recent realisation in May 2023. 

Table 6 - Forecasting quality of models for four forecasting rounds starting in August 2018 
through February 2022 

Model 

 
Root mean squared forecasting error  

in €  
Rank 

  
Milling 
wheat 

Quality 
wheat Rapeseed Maize  

Milling 
wheat 

Quality 
wheat Rapeseed Maize Total 

ARIMA, level 
 

101.1 108.9 117.6 64.2  12 12 10 8 42 

ARIMA, annual growth rate 
 

121.0 152.7 221.9 87.0  7 7 3 2 19 

Combined Forecast 
 

83.4 93.3 111.1 77.8  3 1 1 6 11 

Exponential Smoothing, level 
 

112.2 140.2 222.7 95.5  10 10 11 9 40 

Futures, 12 months ahead 
 

116.5 140.3 242.0 103.4  11 11 12 11 45 

Mallow model avg., comb., 
futures 

 

82.4 97.9 137.1 77.3  2 5 7 5 19 

Mallow model avg., comb., 
institutions 

 

92.4 95.2 121.7 64.5  4 3 5 3 15 

Mallow model avg., sel., 
futures 

 

82.0 97.2 138.4 77.1  1 4 8 4 17 

Mallow model avg., sel., 
institutions 

 

92.7 95.1 121.6 63.6  5 2 4 1 12 

Naive no change 
 

104.6 127.9 218.0 78.3  8 8 9 7 32 

ARIMAX, level 
 

99.9 106.8 115.8 140.8  6 6 2 12 26 

ARIMAX, annaul growth rate   106.8 131.2 122.8 101.4   9 9 6 10 34 

Source: Statistics Austria, World Bank, Macrobond, own calculations. – Compare Section 2 for a description of the 
models and Figure 5 for the forecasting cycles of each crop. 



–  21  – 

   

6. Conclusions 

Accurate and timely forecasts for crop prices provide valuable information for farmers and 
facilitate the decision on which crop to plant in the next growing season. Because the growing 
season varies across crops, farmers will reduce their opportunity set by both a definitive decision 
on sowing a crop as well as a decision to postpone sowing due to unsatisfactory price expec-
tations. On the one hand, the decision to sow prevents the use of the cropland for alternative 
crops. On the other hand, postponing the decision on sowing excludes crops with longer grow-
ing period from use during this season. From a risk management perspective, the decision for 
sowing a crop will always include aspects of diversification. Furthermore, positive price signals 
will induce other farmers to adjust their sowing decision in the same direction. Due to the length 
of the growing period this will have a negative feedback effect on prices. A well-known exam-
ple for this feedback loop is the pig cycle. Therefore, farmers are likely to respond to positive 
price forecasts by marginally increasing the share of cropland devoted to crops with high price 
expectations.  

Farmers can use several sources to build their own expectations on future prices. For example, 
they may rely on the last observed price in their home market or the perception on excess 
supply or demand observed for a certain crop. Alternatively, for homogenous crops traded on 
liquid markets they may use prices of futures with adequate delivery dates. Euronext-MATIF is 
an example in Europe. They may also respond to news about poor or plenty harvests in other 
countries, e. g. in the southern hemisphere. The United States Agriculture Department makes 
crop price forecasts for the US-market. Three international organisations provide public fore-
casts on the expected quantities (produced, consumed, and internationally traded) for a 
broad set of crops (OECD-FAO Agriculture Outlook) or for their prices (World Bank Commodity 
Market Outlook).  

In this paper, we apply three classes of time series models to producer prices of four popular 
crops in Austria: milling wheat, quality wheat, rapeseed, and maize. We concentrate on a fore-
casting cycle which mirrors the times of decision making in sowing and harvesting. For wheat 
and rapeseed, we use information available up to the end of July to make a price forecast 
which can be published by mid-August and refers to the crop price in July of the next year. For 
maize, we use the information available up to the end of January to make a price forecast 
which can be published by mid-February and refers to the price of maize in October of the 
same year. The relevant target month for the price forecast of each crop corresponds to the 
harvest season, when crops will be sold by farmers.  

The time series models encompass Autoregressive Integrated Moving Average (ARIMA) and 
Exponential smoothing (ETS) models, the Mallows Model Averaging method, and ARIMAX mod-
els using futures prices, agricultural stress indicators, and price and quantity forecasts by inter-
national institutions. Due to limited data, we are restricted to make ex-ante crop price forecasts 
through four forecast cycles starting in August 2018 for wheat and rapeseed and ending in 
October 2022 for maize. The resulting small number of forecasting errors excludes a statistically 
robust model selection test, but our results provide reliable evidence that forecasts based on 
models selected by Mallows Model Averaging method provide on average smaller forecast 
errors than naïve forecasts using the last observation or the price of a 12-months ahead future 
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available at the publication date of the forecast. Moreover, the combination of forecasts 
based on the mean of individual model forecasts appears to generate an even higher preci-
sion throughout a period with extraordinary high price volatility.  

At the beginning of the most recent forecast cycle in August 2022 and February 2023, respec-
tively, crop prices have been in the upper range of historical values. Consequently, the com-
bined forecasts point towards a reduction for milling wheat from 294 towards 271 € per tonne. 
The price of quality wheat is expected to decline by 27 € towards 311 € per tonne, and the 
price of maize will fall from 284 to 273 € per tonne. Only the combined forecast for rapeseed 
of 809 € per tonne in August 2023 indicates further price pressure against the 663 € per tonne 
observed in July 2022. Given available realisations up to May 2023 the reduction in prices will 
be stronger than expected, and the forecasted further surge in prices for rapeseed is unlikely 
to be realised. The decline in crop prices will reduce inflationary pressure throughout 2023.  

A promising extension for future research includes the use of multivariate models for forecasting 
crop prices. Ahumada & Cornejo (2016) mention the high correlation among crop prices and 
see some potential for error correction models and vector autoregressive models in first differ-
ences.  
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Appendix 

Table A1 - Descriptive statistics of crop prices 1960 through 2023 by decades 

Decade 

 

Wheat Soybean Maize 

 
 

€ per tonne 

1960-1969 Mean 117.8 209.0 97.9 
 Std. Deviation 8.3 18.5 9.5 
 Min 98.6 166.3 71.8 
 Max 134.0 265.0 118.3 
 Span 35.4 98.8 46.5 

1970-1979 Mean 156.3 298.6 126.6 
 Std. Deviation 51.1 79.5 27.9 
 Min 98.6 202.2 86.9 
 Max 320.8 716.3 203.6 
 Span 222.2 514.1 116.6 

1980-1989 Mean 172.0 299.9 132.0 
 Std. Deviation 41.3 71.7 42.8 
 Min 98.8 184.9 61.8 
 Max 247.6 476.8 208.4 
 Span 148.8 291.9 146.7 

1990-1999 Mean 123.5 211.5 93.9 
 Std. Deviation 21.4 27.1 16.8 
 Min 85.6 167.0 71.8 
 Max 205.5 295.8 160.0 
 Span 119.9 128.8 88.1 

2000-2009 Mean 152.0 252.3 105.0 
 Std. Deviation 36.3 50.5 21.8 
 Min 104.4 197.4 71.3 
 Max 288.2 408.2 184.6 
 Span 183.8 210.8 113.3 

2010-2019 Mean 193.6 369.9 164.8 
 Std. Deviation 38.0 47.9 37.1 
 Min 129.2 300.3 117.0 
 Max 281.8 551.6 271.1 
 Span 152.6 251.4 154.1 

2019-2023 Mean 299.8 506.5 228.0 
 Std. Deviation 90.7 118.7 66.4 
 Min 176.3 325.1 126.3 
 Max 493.7 697.6 349.6 

  Span 317.4 372.5 223.4 

S: OECD, Worldbank (Pinksheet). Monthly average prices converted into Euro-ATS per tonne.  


