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Abstract

Uncertainty about the persistence of the recent rise in inflation poses significant challenges
for practitioners and policymakers. Food price dynamics have emerged as an important con-
tributor to headline inflation, raising concerns about distributional effects and implications
for competition policy. The study aims to provide reliable forecasts for five broad categories
of food prices in Austria. To this end, we evaluate a diverse set of empirical models, review
their ability to predict inflation based on available leading indicators, and discuss the cur-
rent outlook. From an academic perspective, we examine the extent to which the forecasting
accuracy has deteriorated compared to the pre-pandemic period and discuss the relative
performance of time series models, regression trees, and machine learning approaches in the
pre-pandemic and post-pandemic periods.
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1 Introduction

Food is a vital commodity for which there are no substitutes. The lack of substitutes for food
makes its demand unresponsive to changes in price, with price increases having a significant
impact on income. Rising food prices lead to a reallocation of household spending, reducing
disposable income available for non-essential goods and services, such as luxury goods, vacations,
or entertainment, affecting overall consumer demand and potentially also economic growth. On
the other hand, the additional revenue generated by higher prices flows back to producers and
traders in the food supply chain, increasing their revenues and encouraging investment. The
adverse impact of food inflation on economic growth may therefore be less in the long run than
in the short run.

Over the last 70 years, the share of food (incl. non-alcoholic beverages (COICOP CP01))
in the total expenditure of Austrian consumers has fallen from around 45 percent to currently
(household budget survey 2019/2020) around 12 percent. This decline reflects on the one hand,
productivity progress in agriculture and the food industry, and on the other hand, the rise in
living standards and thus higher spending on non-food items and services. These patterns are
consistent with those in other industrialized countries (Whitmore Schanzenbach, Nunn, Bauer
and Mumford 2016). Consumers in developing countries spend a significantly higher proportion
of their income on food Meade and Rosen (1996), but this proportion tends to decrease as living
standards rise.

Large increases in food prices affect low-income households relatively more than higher-
income households. The share of expenditure on food and beverages depends on the level of
household income: In the first decile with the lowest income, it accounts for about 171

2 percent
of total consumption expenditure, according to the 2019/2020 Household Budget Survey, while
in the tenth decile with the highest income it is 131

4 percent.
In its quarterly economic forecast, WIFO forecasts an aggregate for food that includes non-

alcoholic and alcoholic beverages and tobacco products as a single item (Baumgartner 2022).
This project disaggregates this forecast to five items for the forecast horizon of twelve months.
The food items are divided into three categories: (i) pure or predominantly plant-based foods,
(ii) animal-based foods, and (iii) a miscellaneous category of foods that do not clearly fall into
one of the previous two categories. In addition, the prices of beverages are divided into (iv)
non-alcoholic beverages and (v) alcoholic beverages.

Compared to other consumer goods, the food value chain is significantly shorter and more
dependent on regional developments (production conditions, weather, climate). Changes in
agricultural producer prices in Austria and the EU (especially in Italy, Germany, Spain, and
the Netherlands) have a more direct impact on domestic consumer prices for food. This is also
reflected in the selection of variables leading to an improvement in the food inflation forecast.

Inflation rates have increased substantially after the severe economic downturn caused by the
pandemic and the subsequent rise in energy prices (especially in Europe) following the outbreak
of the war between Russia and Ukraine (Baumgartner and Sinabell 2021). Food prices rose at
an above-average rate, i.e. more than the CPI (HICP) as a total. This development was also
observed in the other Euro area countries, although food price inflation in Austria was somewhat
weaker than in Germany and the average of the Euro area countries (see Figures 1 and 2). The
main reason for this difference in the last two years is the higher price increases for plant-based
and animal-based food products in Germany. Prices for non-alcoholic beverages have risen more
sharply in Austria but did not have a strong impact because of the lower weight of this position
as compared to food.
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Figure 1: Food and beverage inflation compared with headline inflation
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(a) Euro area
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(b) Germany
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(c) Austria

The figure compares headline inflation rates with food and beverage inflation rates in Austria,
Germany, and the Euro area. The rates of headline inflation are broadly comparable across
the three economies, although in Austria headline inflation has been more persistent. In
Austria the food and beverage inflation has not increased as much relative to the headline
inflation as in the Euro area particularly in Germany.

The study aims to provide reliable forecasts for five broad categories of food prices in Austria.
We evaluate a diverse set of empirical models, review their ability to predict inflation based on
available leading indicators, and discuss the current outlook, and examine the extent to which
the forecasting accuracy has deteriorated compared to the pre-pandemic period and discuss the
relative performance of time series models, regression trees, and machine learning approaches in
the pre-pandemic and post-pandemic periods. Following this introduction, Section 2 summarizes
the time series data used to estimate and evaluate the competing forecast models presented in
Section 3. Section 4 then compares the overall as well as relative forecasting performance of the
models and Section 5 discusses the current forecast for the period June 2023 to May 2024. The
final section offers concluding remarks.
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Figure 2: Food and beverage inflation rates in Austria, Germany and the Euro area
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(a) Food and beverages
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(b) Plant
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(c) Animal
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(d) Misc.
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(e) Alcoholic
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(f) Non-Alcoholic

The figure compares the inflation rates of the food and beverages aggregate and its five
subcategories for Austria, Germany and the Euro area. Inflation rates for plant-based and
animal-based food products increased more than those for beverages, especially in Germany.
Austria experienced a relatively strong increase in inflation rates for non-alcoholic beverages.

6



2 Data

The data include a set of monthly economic indicators used to forecast each of the five target
time series. The target series are composite price indices obtained by weighting appropriate CPI
components:

1. Plant-based food products (62 CPI components);

2. Animal-based food products (45 CPI components);

3. Miscellaneous food products (11 CPI components);

4. Alcoholic beverages (10 CPI components);

5. Non-alcoholic beverages (12 CPI components).

Appendix A lists the individual components of the CPI, their weights in the current con-
sumption basket and their aggregation weights in the target series. The aggregation weights
are expressed in percent and sum to unity. The sum of the consumption basket weights is less
than one because the basket contains many other goods and services that are not included in
the target series. Miscellaneous food products bundles those components that cannot be clearly
classified as plant or animal or clearly do not belong to either category, e.g. salt or deep-frozen
convenience food.

Table 1: Groups of indicators.

AT CH EA EU US World Total

Production 2 2
Trade 2 2
Supply chains 1 1

Commodity prices 1 3 58 62
Import prices 10 7 17
Exchange rates 1 1

Producer prices 22 11 97 62 192
Wholesale prices 16 1 17
CPI 9 9
Wages 4 4

Financial 3 2 5
Sentiment 3 2 5

Total 61 11 111 69 6 59 317

Food price inflation is shaped by a complex interplay of numerous determinants (Baumgartner
and Sinabell 2021). The empirical approach taken in this study is to collect a comprehensive
data set on potential determinants of food price inflation in Austria and to allow a model to
identify those indicators that improve the forecasting performance. Table 1 lists the main groups
of indicators. The data set covers import prices, producer prices, wholesale prices, and consumer
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prices of major trading partners, as well as a number of relevant commodity prices, including
fuels (Baumgartner and Sinabell 2021).

Production and trade: The general level of economic activity and demand is an important
determinant of overall inflationary pressures and, in particular, of food price inflation. Increased
output levels can result in surplus supply, leading to lower prices. Conversely, reduced output
due to economic downturns or supply chain disruptions can lead to temporary shortages and
higher prices. International trade can also impact food prices, as imports and exports influence
supply and demand dynamics in domestic markets. We capture the business cycle using monthly
production indices for the primary sector, manufacturing, and energy in the EU 27.

Supply chains play a pivotal role in the availability and affordability of food. Supply chain
disruptions due to political crises, or transportation bottlenecks can affect (timely) delivery of
agricultural commodities and finished products. An index of the situation with supply chains
provides insights into the efficiency and resilience of these systems, impacting food price inflation.

Commodity prices: Food price movements are closely linked to the prices of key com-
modities, such as grains, oilseeds, coffee, sugar, and livestock. Fluctuations in commodity prices
can be influenced by weather conditions, geopolitical events, and global supply and demand
imbalances. They propagate through food supply chains, affecting input costs and ultimately
influencing consumer prices.

Import prices and exchange rate: Import prices are influenced by a combination of
factors, including international commodity prices, exchange rates, transportation costs, tariffs,
and trade policies. Higher import prices can translate into increased consumer prices, particu-
larly in economies heavily reliant on imports. Fluctuations in exchange rates can increase the
cost of imported food products, leading to higher prices for consumers, whereas a strengthening
currency can have the opposite effect on food price inflation.

Producer and wholesale prices reflect the costs incurred by food producers. Higher input
costs, such as labor, energy, and raw materials, are often passed on to consumers, contributing
to overall food price inflation. This is the largest group of indicators used to forecast the target
series, with about sixty percent of all indicators belonging to this category. The extent to which
costs are passed on to consumers depends on prevailing market conditions and the intensity
of competition in the relevant markets. Wholesale prices serve as an intermediary between
producer and consumer prices that can be driven by factors such as production levels, market
demand, transportation costs, and supply chain efficiencies. Fluctuations in wholesale prices can
influence the pricing decisions made by retailers, impacting the final prices paid by consumers.

CPI: The target series comprise highly disaggregated CPI indicators weighted according
to their relative importance. The set of indicators used to forecast each target series includes
further CPI aggregates related to energy, different kinds of fuels and other agricultural products
used as inputs to food production. Energy prices appear to be a major factor behind food price
inflation.

Wages are a potentially important determinant of food price inflation in the medium term.
Higher wages raise production costs, which can be passed on to consumers through higher prices.
The role of wage dynamics is particularly relevant for Austria, with its highly centralized wage
bargaining system (collective bargaining rate coverage of 98 percent) in which representatives
of employers and trade unions negotiate minimum hourly wage increases and other working
conditions. Conversely, stagnant or falling real wages have less of an impact on production
costs, but also constrain purchasing power and demand, which can lead to lower food price
increases.

Financial market conditions can have an indirect impact on food price inflation, as many
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agricultural commodities such as coffee, corn, and sugar are traded internationally and have
become an increasingly popular alternative to traditional financial investments. Stock market
volatility can have a direct impact on commodity markets and consumer confidence, which in
turn can affect consumption patterns and food price dynamics.

Sentiment indicators reflect the current economic conditions and near future expectations
of consumers and producers. Positive sentiment and optimistic economic expectations can drive
spending, increase demand and potentially lead to higher prices. Pessimistic sentiment can
dampen consumer and producer confidence and constrain demand, potentially mitigating up-
ward pressure on food prices.

2.1 Seasonality and stationarity

The majority of the time series used to estimate the forecasting models is expressed in year-
over-year (yoy) growth rates. The choice of growth rates over the previous year’s month rather
than over the previous month is motivated by a desire to minimize the impact of seasonality
on model estimates. This approach is validated by the ARIMA models discussed below, which
indeed show the absence of seasonal terms in the yoy growth rates. The exception to this
convention is sentiment indicators, which may turn negative if pessimism outweighs optimism,
and are therefore included in levels.

The sample used in model selection and validation covers the period from January 2001
to December 2022 for a total of 264 monthly observations. The forecast horizon extends 12
months into the future, i.e., currently from June 2023 to May 2024. Models are tested based on
hypothetical out-of-sample forecasts for a given year (2018, 2019, 2020, 2021), as explained in
more detail below. In terms of geographic coverage, about sixty percent of all indicators reflect
conditions in European markets, as these are most relevant to Austria.

The growth rates are weakly stationary. The KPSS test shows that the null hypothesis of
level stationarity or trend stationarity cannot be rejected for the five target series at all standard
statistical significance levels (Kwiatkowski, Phillips, Schmidt and Shin 1992). Only 7.2 percent
and 18.1 percent of all indicators fail the test at the 5 percent significance level for level and
trend stationarity, respectively, but pass both tests at the 1 percent level. The tests are based
on 15 lagged values of the time series, as is appropriate for monthly data.

3 Forecasting models

Understanding the causes of inflation as a theoretical endeavor and forecasting inflation as a
practical application have a long tradition in economics due to the monetary policy objectives
pursued by central banks, and there is a large body of literature on the subject (Faust and
Wright 2013). Early works on inflation forecasting, such as Stock and Watson (1999), laid the
foundation for research in this area. Since then, numerous studies have investigated into various
factors contributing to inflation, including expectations, fluctuations in financial markets, supply
shocks emanating from natural disasters, climate change and international supply chains. The
topic of forecasting food inflation is particularly prevalent in agricultural and resource economics,
where price developments are linked to the natural conditions that determine agricultural yields.
Government bodies such as US Department of Agriculture (Kuhns, Leibtag, Volpe and Roeger
2015) and international organizations such as the World Bank (for Reconstruction and (IBRD
2023) provide regular forecasts for internationally traded commodities and retail food prices.
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Inflation forecasting employs a variety of models, ranging from univariate and multivariate
time series models, as demonstrated by Ahumada and Cornejo (2016), to state-space models and
mixed-frequency models that can handle mixed-frequency data, e.g. Modugno (2013) and Mon-
teforte and Moretti (2013), and increasingly more often regression trees and machine learning
models that are particularly well-suited in data rich environments featuring large quantities
of high-frequency price data. As technology and data availability have advanced, new fore-
casting models incorporating more advanced techniques have emerged. Recent developments
in inflation forecasting have seen the utilization of large volumes of such data made available
through internet commerce, e.g. Modugno (2013), Cavallo and Rigobon (2016), Gorodnichenko
and Talavera (2017), Cavallo (2018), Aparicio and Bertolotto (2020), Macias, Stelmasiak and
Szafranek (2023), and consumer survey data and internet search data (Jo and Lusk 2016).
Analyzing such extensive data sets requires the application of new forecasting models, often
incorporating elements of machine learning (e.g., Menculini, Marini, Proietti, Garinei, Bozza,
Moretti and Marconi 2021), which focuses on forecasting wholesale food prices.

The forecasting models used in this study fall into three broad categories: time series models
optimized using cross-validation, regression trees, and machine learning approaches. In the
following, we briefly discuss the set of competing forecasting models.1

3.1 Time series models

Time series models forecast by leveraging the temporal patterns in the data. Such models may
feature model selection, such as greedy search on the set of possible specifications, regularization,
or model averaging. Forecasting models can be optimized using cross-validation techniques,
whereby the parameters are tuned on a training set, and performance is evaluated on a validation
set. This helps to select the most accurate model for a time series.

3.1.1 ARIMA

The first model is the ubiquitous univariate ARIMA model, whose regular and seasonal pa-
rameters are selected to minimize the Bayesian Information Criterion (BIC). The BIC is a
popular model selection criterion that balances the performance of a model and its complexity
measured by the number of parameters in the model. It penalizes overfitting by preferring a
simpler model to a more complex model, unless the residual sum of squares of the more complex
model is much smaller. When picking a model, the model with the lowest BIC should be pre-
ferred (Schwarz 1978). The ARIMA model selection follows the two-step procedure discussed
in Hyndman and Khandakar (2008). Since the growth rates of the targets pass the weak station-
arity test (KPSS test), we expect the optimal ARIMA models to be ARMA models, i.e. they
do not require regular or seasonal differencing.

Table 2 reports the optimal ARIMA models for the target series. The parameters p and q
(P and Q) denote the number of regular (seasonal) AR and MA terms; d (D) denotes the order
of the regular (seasonal) differencing operators. The results confirm the weak stationarity (d,
D) and the absence of seasonality (P , Q) in the growth rates of the target variables.

As a univariate model, ARIMA is a useful benchmark for the information and predictive
power embodied in the past values of the time series and possibly in the current and past values
of an error term. Richer forecasting models that feature indicators as independent variables are

1All the models used in this study have either been implemented in R by the authors or have been estimated
using existing implementations in R.
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expected to outperform the ARIMA model, except perhaps at very short time horizons where
the own momentum of the time series may obscure the signal contained in the indicators. The
BIC tends to select parsimonious models. Despite being (asymptotically) consistent, it does
not necessarily identify the true model in a finite sample. Using the BIC criterion for model
selection optimizes fit but not forecasting performance. While ARIMA models can be optimized
for forecasting performance using cross-validation, we reserve explicit forecasting optimization
for the following set of models that extend the univariate framework of the ARIMA model.

Table 2: Optimal ARIMA models.

p d q P D Q

Plant 2 0 0 0 0 0
Animal 3 0 1 0 0 0
Misc. 1 0 1 0 0 0
Alcoholic 2 0 0 0 0 0
Non-alcoholic 3 0 2 0 0 0

3.1.2 Hansen model selection and combination

A natural extension of the ARIMA model includes indicators as independent variables and
uses the information contained in their time variation to improve predictive power. With M
indicators and L (L ≥ 0) lagged indicators, where the contemporaneous time series have L = 0,
the number of conceivable model specifications equals ML. An exhaustive search on the set
of all combinations of indicators and their lagged values would thus require estimating 2ML

different specifications, including the univariate specification. The computational burden of
sifting through all conceivable specifications with 317 indicators is prohibitive, especially if
autoregressive terms in the target series or moving average terms are also to be included.

To keep the computational burden manageable, we filter the indicators based on the magni-
tude of their leading cross-correlations with the target series before including them in the model
search. We thus hope to retain promising indicators and discard those indicators with low
predictive power. The selection procedure then operates on the subset of promising indicators.

For a pair of time series xt and yt, the cross-correlation at time shift h ∈ Z is defined as:

ρ(h) =
Eh (xt−h − µx) (yt − µy)

σxσy
,

where µx, µy and σx, σy are the constant means and standard deviations. When the time shift
is positive, h > 0, the correlation coefficient shows the degree of lead of the indicator series xt on
the target series yt. We call xy a promising leading indicator for the target series yt at horizon
h if the magnitude of the correlation is sufficiently high, |ρ(h)| > ρ̄. The range of reasonable
threshold ρ̄ value for a cutoff criterion will depend on the sample and may also depend on the
horizon h. We found that in our sample, ρ̄ = 0.5 proved to be a reasonable choice, retaining
sufficiently many indicators at all horizons. The correlation threshold should be set in such a
way that at least one of the indicators (ideally several indicators) exceeds it. This indicator
would then compete with the optimal univariate model.
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Our time series data suffers from a multicollinearity problem in that some indicators have
almost identical growth rates and, as a consequence, almost identical correlations with the target
series. To address this problem, we first sorted the indicators in descending order of correlation
and then removed all indicators that differed from the previous indicator in the sorted list by less
than ρδ in absolute value; in our case ρδ = 0.05. In other words, we removed all the indicators
that were within the tolerance of the previous indicator (i.e. too similar).2

To identify models that minimize the forecast error for a given forecast horizon, we use the
model selection procedure proposed by Hansen (2008). The Hansen Select procedure is based
on the fact that leave-one-out cross-validation (LOOCV) errors approximate the one-step-ahead
forecast error of the ordinary least squared (OLS) regression. The data set is divided into n
subsets, where n is the total number of observations. Each subset contains a single observation,
and the model is trained n times, each time omitting a single observation as the test sample
and using the remaining n− 1 observations as the training sample. The model’s performance is
then evaluated on the left-out observation. It is important to emphasize that the one-step-ahead
forecast error is the appropriate performance metric because we employ separate models for each
forecast horizon when predicting the target series. Consequently, each forecast is essentially a
one-step-ahead forecast of a specific model.

Let m be a model for a target y featuring a full-rank regression matrix containing some
indicators X. The model m is completely defined by the indicators included in X.3 The model
includes a constant term so that the first column of X contains the unit vector. Let n be the
number of observations, or the number of rows of X.

Denote the OLS estimate of the model m by β̂ = (X⊤X)−1X⊤y and let e = y − Xβ̂ be
the vector of residuals. Define a squared matrix M = X(X⊤X)−1. The matrix M is sometimes
called the residual maker matrix, as e = y −My. Let the vector h be the diagonal of M, i.e.
h ≡ diag(M). Then, the vector ẽ with elements

ẽi =
ei

1− hi
for all i = 1, . . . , n

approximates one-step-ahead forecast error of m in a LOOCV, and

CV =
ẽ⊤ẽ

n

approximates the mean squared forecast error. Given a set of competing models m = 1, . . . ,M ,
the optimal model minimizes the CV criterion.

Model selection proceeds in two steps: first by selecting the lagged values of the target
variables and then by selecting the indicators and their lagged values. The two-step procedure
is applied separately to each forecasting horizon, yielding twelve optimal specifications that
minimize the LOOCV criterion. Thus the number of competing models equals 2L(1+M), where
the first term stands for up to 2L combinations of the lags of the target variable and the second
term for all combinations of the indicators and their lagged values 2ML.

There are many alternatives to the Hansen model selection procedure, including the classical
AIC and BIC criteria, the Mallows criteria, and predictive least squares.4 The advantage of the

2Formal methods for detecting multicollinearity include, e.g., inflation variance factors in Kutner, Nachtsheim
and Neter (2004).

3Here and below, we omit the target and horizon to keep the notation simple, although each model is specifically
optimized to forecast for a specific horizon.

4The literature on model selection and predictive combination is quite extensive, drawing on more than half
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Hansen approach is its computational simplicity. It does not require estimating the model for
each of the n potential training samples, where n is the number of observations. The root-
mean-squared forecast error is computed directly from the model residual ei at the validation
observation and the weight hi. The forecast errors are estimated directly from the fit errors
(residuals) without the need to re-estimate the model each time a single observation is transferred
from the training sample to the test sample. Another advantage of the Hansen approach is its
robustness to heteroskedasticity of model disturbances.

Table 2 compares the number of promising indicators that meet the correlation criteria by
forecast horizon, the optimal number of lags of the target, and the number of indicators or their
lags selected by the Hansen procedures. The number of such indicators decreases as the horizon
increases but this is to be expected as it is easier to find indicators that contain information
about the near future than about the distant future. The Hansen selection tends to select
parsimonious models. For this reason, we supplement the Hansen selection with the Hansen
combination, which weights the forecasts of several models to improve forecast accuracy.

The Hansen Combine procedure seeks non-negative weights w for a set of competing mod-
els indexed by m = 1, . . . ,M using a constrained quadratic program. Let D = [e(1), . . . , e(M)]
be a matrix of dimensions n×M , where n is the number of observations and M the total number
of models. The quadratic program is given by:

argmin
w

{
1

2
w⊤Dw

}
, such that wm ≥ 0 for all m = 1, . . . ,M and

M∑
m=1

wm = 1.

It features M + 1 constraints, of which there are M inequality constraints and a single equality
constraint. Some kind of conditioning of the matrix D may be required when there are many
observations and models to ensure that it is numerically positive semi-definite.5

The Hansen selection chooses the best model, whereas Hansen combination allows for the in-
clusion of multiple weighted models, potentially including more indicators into the final forecast.
Selection is thus a special case of combination. The number of relevant indicators that meet
the correlation criteria decreases with the forecast horizon (Table 2). The Hansen combination
forecast includes all indicators, as each of them is present in some model with a nonzero weight.

The Hansen selection and combination methods are computationally intensive when the
number of indicators is large. Hansen selection considers all combinations of indicators and
their lags, and Hansen combination solves a quadratic program with inequality constraints in
which the number of variables is given by the number of combinations. To apply the Hansen
methods, we had to restrict the data set to those indicators that have a reasonable lead over the
target at a given horizon. We will continue to use this smaller data set of promising indicators
as a benchmark. Next we discuss models that can be estimated using the entire data set of 317
indicators and their lagged values.

a century of research, see Bates and Granger (1969), Akaike (1973), Mallows (1973), Granger and Ramanathan
(1984), Hendry and Clements (2004), Stock and Watson (2006), Timmermann (2006), Hansen (2007).

5This problem often arises in the context of correlation matrices. We use the method proposed by Higham
(2002). For an alternative method, see Knol and ten Berge (2006).
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Table 3: Variable selection using correlations and Hansen methods.

Horizon 1 2 3 4 5 6 7 8 9 10 11 12

Plant

Lead correlation 8 7 7 7 6 6 5 5 4 4 4 3

Hansen Select: Target lags 1 2 2 2 2 2 3 3 3 3 2 2
Hansen Select: Indicators 5 1 4 3 5 3 4 4 3 2 4 2
Hansen Combine: Target lags 1 2 2 2 2 2 3 3 3 3 2 2
Hansen Combine: Indicators 8 7 7 7 6 6 5 5 4 4 4 3

Animal

Lead correlation 9 9 9 9 9 8 8 7 7 7 7 6

Hansen Select: Target lags 4 3 2 3 3 3 3 3 3 3 2 2
Hansen Select: Indicators 5 4 5 5 6 6 6 4 4 7 5 4
Hansen Combine: Target lags 4 3 2 3 3 3 3 3 3 3 2 2
Hansen Combine: Indicators 9 9 9 9 9 8 8 7 7 7 7 6

Misc.

Lead correlation 6 6 6 6 6 6 7 7 7 8 8 7

Hansen Select: Target lags 4 3 3 3 2 3 3 3 4 3 1 1
Hansen Select: Indicators 4 3 4 4 4 3 6 5 2 4 4 4
Hansen Combine: Target lags 4 3 3 3 2 3 3 3 4 3 1 1
Hansen Combine: Indicators 6 6 6 6 6 6 7 7 7 8 8 7

Alcoholic

Lead correlation 5 5 4 4 4 4 4 4 3 3 2 1

Hansen Select: Target lags 3 3 3 3 2 2 2 3 4 3 2 3
Hansen Select: Indicators 1 1 2 3 1 2 2 1 2 1 2 1
Hansen Combine: Target lags 3 3 3 3 2 2 2 3 4 3 2 3
Hansen Combine: Indicators 5 5 4 4 4 4 4 4 3 3 2 1

Non-alcoholic

Lead correlation 8 8 8 8 8 8 9 9 9 9 9 8

Hansen Select: Target lags 4 4 4 4 4 3 3 4 3 3 1 1
Hansen Select: Indicators 5 4 4 5 6 6 6 4 3 4 7 4
Hansen Combine: Target lags 4 4 4 4 4 3 3 4 3 3 1 1
Hansen Combine: Indicators 8 8 8 8 8 8 9 9 9 9 9 8

The table shows the number of indicators that meet the correlation criteria by forecast
horizon, the number of lags of the target, and the number of indicators or their lags
selected by Hansen model selection and model combination. The number of relevant
indicators that meet the correlation criteria decreases with the forecast horizon. The
Hansen selection tends to select a parsimonious model and is therefore complemented by
the Hansen combination, which is more comprehensive and potentially exploits a broader
set of information.

3.1.3 Regularized regressions

The correlation patterns revealed that many indicators are highly correlated. This is not surpris-
ing, as most of the indicators are producer, wholesale, or consumer prices that underlie similar
inflation trends. High correlation causes the moment matrix X⊤X used to compute the OLS
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estimate to be near-singular. The presence of many highly correlated indicators motivates the
use of regularization to improve the OLS estimate and achieve variable selection.

Regularization adds a penalty term to the loss function of a multiple-regression model with
the aim of balancing between model complexity and out-of-sample performance. In the context of
a bias-variance trade-off, regularization trades a small increase in bias for a substantial decrease
in variance. Regularized regression offers superior performance compared to standard OLS
regression in scenarios where multicollinearity is present and variable selection is required.

The lasso and ridge regressions impose L1 (∥·∥1) and L2 (∥·∥2) penalties on the OLS esti-
mate. The models are optimized using 10-fold cross validation that partitions the data into 10
approximately equal-sized subsets, one of which is retained for testing.6

Elastic Net linearly combines the two penalties, as

β̂ ≡ argmin
β

{
∥y −Xβ∥2 + λ

[
0.5(1− α)∥β∥22 + α∥β∥1

]}
.

The ridge and lasso regressions emerge as special cases when α = 0 and α = 1, respectively. We
estimate ridge and lasso regressions separately, as well as their combination with α = 0.5. The
optimal choice of the parameter λ is obtained using 10-fold cross validation.

Ridge regression augments the loss function with a penalty term equal to the square of the
magnitude of the coefficients (L2 norm). The penalty term encourages the model to keep the
regression coefficients small, effectively shrinking them towards zero. This reduces the impact
of individual indicators without excluding them completely, allowing all indicators to contribute
to the forecast. Ridge regression is particularly useful in the presence of multicollinearity among
the indicators.

Lasso regression adds a penalty term equal to the absolute value of the coefficients (L1

norm). The penalty term encourages model parsimony by letting some coefficients to vanish.
Lasso regression thus performs variable selection, which is particularly useful when dealing with
many indicators, only a few of which are likely to be relevant. Preliminary correlation analysis
has shown that this is indeed likely to be the case in our data. Last but not least, the more
parsimonious the model, the easier it is to interpret.

3.2 Regression trees

Regression trees are a popular ensemble learning method used for both regression and clas-
sification. They are used most effectively when processing high-dimensional data with many
indicators that may contain outliers and missing observations. Regression trees and Bayesian
additive regression trees (BART) leverage the strengths of recursive decision trees to capture
nonlinear relationships in the data and combine them with various averaging methods to reduce
forecast variance and avoid overfitting. By using a Bayesian approach, BART is particularly
useful for expressing forecast uncertainty. These and other qualities make both models valuable
for analyzing and forecasting time series data.

Random forests average multiple regression trees with the aim of improving the accuracy
and stability of forecasts. In this study, we use Breiman’s (2001) random forest algorithm
equipped with randomized node optimization and bootstrap aggregation (bagging). In random

6For a comprehensive treatment of regularized regressions and related concepts, see James, Witten, Hastie
and Tibshirani (2013), Hastie, Tibshirani and Wainwright (2015), Efron and Hastie (2016). An example of an
application that uses the implementation of ridge, lasso, and elastic net regressions in R can be found in Melkumova
and Shatskikh (2017).
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forests, forecasts are obtained from an average of regression trees, each of which relies on a
random sample and random choice of indicators. Random forests are particularly useful for
extracting non-linear patterns in noisy data. However, they struggle to capture long-term trends
and may require additional techniques to address seasonality.7

Bayesian Additive Regression Tree (BART): The effectiveness of regression trees can
be greatly improved by gradient boosting. Boosting combines weighted trees, with each new
tree predicting the residual of the previous fit. Each new tree aims to capture the variations
that were not captured by the existing trees in the ensemble. BART is closely related to random
forests with bagging and gradient boosting, see Chipman, George and McCulloch (2010), or Hill,
Linero and Murray (2020). Each new tree is constructed randomly as in bagging, and each tree
attempts to capture variation not previously captured by the model as in boosting. The main
difference lies in the way new trees are generated by perturbations based on partial residuals
from the previous iteration. BART extends the idea of boosting by placing a prior distribution
on the ensemble of regression trees, allowing for uncertainty estimation in the predictions. It
does so within a Bayesian framework to derive the posterior distribution of the parameters using
Markov Chain Monte Carlo sampling or variational inference.

The use of BART in time series forecasting offers several benefits. It can handle complex
and non-linear relationships, capture interactions between predictors, and provide probabilistic
forecasts. BART is particularly useful when dealing with time-varying dynamics, irregularly
spaced data, and situations where there is limited domain knowledge or prior information.

3.3 Machine learning

Machine learning algorithms learn patterns and relationships in time series data. Some com-
monly used machine learning algorithms for time series forecasting include support vector ma-
chines and neural networks. Extreme Learning Machines (ELM) belong to the family of feed-
forward neural networks. EMLs are known for their computational efficiency and fast learning
rates. They offer an alternative to traditional neural networks that overcome the limitations of
the latter in terms of training time and generalization performance.8

The ELM consists of a single hidden layer of neurons, randomly initialized with weights,
and an output layer. During training, the input data is fed through the hidden layer, and the
output weights are directly computed using a regression technique. The model in this study
uses one of the four regression types in the output layer: the conventional linear regression as
well as ridge, lasso and step regressions. The neurons in the hidden layer use a given activation
function, here a sigmoid function, to transform the input data into a higher-dimensional feature
space. The output weights are then obtained by solving a linear system of equations, which
makes the training process exceptionally fast.

ELMs have gained popularity for time series forecasting due to their ability to handle large
amounts of data efficiently. The random initialization of the hidden layer weights enables ELMs
to capture complex temporal patterns and nonlinear relationships in time series data. The
algorithm requires preprocessed time series, for example data normalization. ELMs have been
applied to a wide range of time series forecasting problems. Their simplicity and fast training
process make them suitable for handling large-scale data sets and real-time applications.

7More information on regression trees can be found in Chipman, George and McCulloch (2006), Hastie, Tib-
shirani and Friedman (2009), Sheppard (2017).

8See, Ding, Zhao, Zhang, Xu and Nie (2013), Huang, Zhu and Siew (2004), Huang, Zhu and Siew (2006).
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Both multilayer perceptron (MLP) and ELM are supervised machine learning models used
for classification and regression tasks. However, there are some key differences between the
two. The MLP uses backpropagation to adjust the weights of the network during training. In
contrast, ELM uses a single-pass training algorithm where the weights are randomly generated
and only the weights in the output layer are adjusted during training. The MLP has multiple
hidden layers between the input and output layers, whereas ELM has only one hidden layer. The
MLP is prone to overfitting, especially when the number of hidden layers is large, while ELM is
less prone to overfitting due to its randomly generated weights. The MLP requires a significant
amount of computation to adjust the weights of multiple hidden layers during training, whereas
ELM has a simpler training process that requires less computation. In summary, MLP is a more
complex model with multiple hidden layers and a backpropagation training algorithm, while
ELM is a simpler model with a single hidden layer and a single-pass training algorithm. ELM
has advantages in terms of computational complexity and is less prone to overfitting but may
not perform as well as MLP in certain applications.

4 Forecasting performance

Let us next turn to the forecasting performance of the best models or the average forecasting
performance of all models at different episodes and horizons. The test episodes labeled 2018,
2019, 2020, 2021 refer to the year in which the forecasts are made. We do not evaluate forecasting
performance prior to 2018, since withholding data for out-of-sample evaluations would leave the
training set that begins in January 2001 too short for some models. Starting in 2018 allows us
to retain at least 200 monthly observations for fitting the models. The four test episodes cover
the recent past. Excluding 2022 from the evaluation allows us to retain twelve months as the
maximum forecasting horizon for each episode.

In each month of a given test episode, twelve out-of-sample forecasts for the following twelve
months are computed with a set of models estimated on the data available up to that time.
The forecasts cover the current and following year, with the first one being a one-month-ahead
forecast of January 2018 for February 2018 and the last one being the twelve-months-ahead
forecast of December 2021 for December 2022. The statistics reported for a particular year
should be taken either as the most accurate (best) forecast or the average of all forecasts that
would have been computed in that year. The averages for a given forecasting horizon aggregate
all one-month-ahead forecasts, all two-months-ahead forecasts, etc.

The recent years have been hallmarked by an exceptionally dynamic inflationary environ-
ment. The choice of test episodes is also motivated by the desire to compare forecasting perfor-
mance before and after the severe economic downturn caused by the pandemic and the subse-
quent rise in inflation. We thus compare the calmer times with the times of crises. We expect
forecast errors to be smallest for the 2018 forecasts, as inflation was moderate in 2018 and 2019,
and largest for the longer-term 2021 forecasts when inflation soared following the outbreak of the
Ukraine war in February 2022. We also expect that performance and the usefulness of models
will gradually return to its pre-crisis levels once the current inflation dynamics abate.

There exist many quantitative measures of forecasting accuracy, the most common ones being
the root-mean-squared error (RMSE) and the mean absolute error (MAE). Both measures carry
the same units as the target. This makes it convenient to compare errors with the mean of the
target and the standard deviation. The mean conveys the magnitude of the target time series,
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and the standard deviation conveys the amplitude of its variation.9 More volatile series should
be more difficult to forecast, especially if the volatility emanates for random idiosyncratic shocks
rather than the current dynamics of the leading indicators acting as exogenous predictors. We
express the forecasting accuracy of a model using the MAE, because it is less sensitive to outliers
than the RMSE.

Figure 3: Best model’s forecast MAE by horizon
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The mean absolute error (MAE) in percentage points tends to increase with the forecast
horizon for all years and has increased dramatically since 2020.

Before comparing the forecasting performance of individual models, it is useful to get a broad
view on the forecasting accuracy they provide. Figure 3 shows the MAE of most accurate (best)
models averaged over all targets and test episodes. The best models are listed in Figure B.1
of the Appendix B. A ranking of the models will be discussed in detail at the end of this
section. Here we pause to remark on the expected steady decline in the forecast accuracy with
the horizon in the left panel of Figure 3. One-year-ahead forecasts are roughly three times less
accurate than one-month-ahead forecasts, the error increasing with the horizon at a faster than
linear rate. The right panel of Figure 3 presents the errors separately for the four test episodes.
The errors have increased substantially during 2020 and 2021. The increase is disproportionately
high at longer forecast horizons, but even one-month-ahead errors have roughly doubled. This is
especially true for the forecasts made in 2021, which cover 2022 in the longer term. In February
2022, the war between Russia and Ukraine has triggered a major global shock in energy prices.
This shock amplified the inflation momentum gained during the recovery from the pandemic in
2021, leading to unprecedented inflation rates in the second half of 2022.

The time episode for out-of-sample forecasts is not the only element of the design of a data
set used in evaluating the models. With a maximum of 6 lags and 317 indicators, the total
number of variables that can enter a model equals 6 + 7 · 317 = 2225. To keep the size of the

9This information can be combined using a coefficient of variation defined as the ratio of the standard deviation
to the mean. The average inflation rates in our sample are never too low, so that the coefficient of variation is
not overly sensitive to small changes in the mean.
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data sets to a manageable size, we limit ourselves to the following three designs (Set 1, 2, 3) for
each episode and horizon.

Set 1 contains the promising indicators and their lags. These indicators meet the correlation
criteria. In addition this set contains the lags of the target that have been identified using the first
stage of the Hansen selection procedure. Recall that the Hansen selection procedure first picks
the lags of the target and then picks indicators and their lags from the set of promising indicators.
We noted in Section 3.1.2 that the computational complexity of the Hansen selection (greedy
search) and combination (quadratic program) methods means that they can only be applied to
a subset of promising indicators, which is much smaller than the set of all indicators. Set 1 is the
smallest of the three. The number of variables in the first set is given by the figures for Hansen
select shown in Table 3. Set 2 includes the own lags of the target that have been identified
using the two-stage Hansen model selection procedure and all contemporaneous indicators. Set
3 features all own lags of the target and all contemporaneous indicators. Sets 2 and 3 thus
feed all indicators to the forecasting models, except their lagged values. The models then rely
on their selection and aggregation mechanism to produce optimal forecasts. Set 3 contains 347
variables, i.e. six lagged values of the target and all 317 contemporaneous indicators.

Figure 4: Relative ranks of models by set
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(a) Forecast year 2018
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(b) Forecast year 2021

Set 1 contains the promising indicators. Set 2 includes the target lags selected by the
Hansen procedure and all contemporaneous indicators. Set 3 includes all target lags and
all contemporaneous indicators. The first and most parsimonious set tends to produce least
accurate forecasts in 2018 and most accurate forecasts in 2021.
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Figure 4 shows the relative ranks of the models between the three sets for the 2018 and 2021
forecasts. For each model that can be estimated with all three sets, the version with the lowest
MAE is given rank one and the version with the highest MAE is given rank three. Relative ranks
are calculated separately by test episode and horizon. Relative ranks (blue bars) were averaged
across all targets and horizons. The red bars show the average of the ranks of all models.

The forecasting performance of the models varies across the sets. While the forecast errors
for 2018 show the expected pattern that larger and presumably richer data sets lead to smaller
forecast errors, this does not appear to be the case in 2021, where Set 1, based on the promising
indicators, performs best. Note that the Hansen methods are not included in this figure because
they were computed using only Set 1.

Figure 5: Best model’s forecast MAE by target and horizon
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(a) Forecast year 2018
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(b) Forecast year 2019
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(c) Forecast year 2020
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(d) Forecast year 2021

The forecast errors of best models for beverages tend to be higher than those for food
products, especially for non-alcoholic beverages in 2018 and for alcoholic beverages in 2020.
The forecast errors for plant-based and animal-based foods increased dramatically in 2021.
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Figure 5 shows the forecast errors (MAE) separately by targets, episodes and horizons. The
forecast errors for beverages are higher than for the prices of food. This can be seen from the
elevated forecast errors for non-alcoholic beverages in 2018 (dark gray), all beverages in 2019
(blue and dark gray) and alcoholic beverages in 2020 (blue). It is therefore quite remarkable that
the forecast errors for beverages are relatively low during 2021, i.e., during the period in which
their prices have risen from an average of 1 percent for forecasts made in 2018-2020 to more than
4 percent for forecasts made in 2021. This combination of low predictive power during calmer
periods and high predictive power during periods of extreme inflation suggests that the available
indicators are not particularly informative. The consequence is that the recent price dynamics
of a target remains a reasonable predictor of its future dynamics. This is indeed the case, as
Table 3 shows that for alcoholic beverages only few indicators meet the correlation criterion of
Section 3.1.2. The list of best models in Figure B.1 shows that an optimally selected ARMA
model often emerges as the best model for beverages in 2018 (alcoholic beverages at horizons
7-12) and 2019 (non-alcoholic beverages at horizons 1-5). The relatively good performance of
the univariate ARMA model confirms the lack of informative indicators for alcoholic beverages.

Table 4 at the end of this section summarizes the forecast errors (MAE) for windows of
two consecutive years, indicated by year in which the forecast is computed, supplemented by
basic summary statistics for the targets. The forecast errors of the best (most accurate) models
at different horizons are averaged by trimesters of 1-4 months, 5-8 months, and 9-12 months.
Taking the inflation rates for animal, plant, and miscellaneous food items together, forecast
errors have been around 0.8 to 1.7 percentage points, which is roughly within 22 to 45 percent of
the standard deviation and about 30 to 60 percent of the mean. The forecasts for beverages have
been slightly less accurate with average errors of around 1.1 to 1.8 percentage points, or roughly
within 33 to 55 percent of the standard deviation and 50 to 80 percent of the mean. Comparing
the error of the forecasts made in 2018 and 2021, the errors of food price forecasts have increased
by roughly 0.8 percentage points for horizons of up to three months to 3.7 percentage points on
the longer end of the twelve-month horizon. The forecast errors for beverage prices have also
risen but only by 2.0 percentage points on the longer end.

The final aspect we investigate is the relative forecasting performance of the models. Fig-
ure B.2 in the Appendix summarizes the distribution of forecast errors by target and horizon for
the 2018 and 2021 forecasts. The 2018 forecasts show a large spread in the forecast errors for
alcoholic beverages and for plant-based foods forecast 7 to 10 months ahead. For the beverages,
we see an increase in the spread of forecast errors with the forecast horizon. The spread of fore-
casts for 2021 is much clearer, with higher median errors but tighter distributions around the
median. This reflects the fact that during the crisis the performance of all models deteriorates,
so the relative performance of the models stays comparable, resulting in fewer exceptionally
good and exceptionally bad models in the group.

Figure B.1 shows the most accurate model by target, episode, and horizon. The color
gradient is scaled from green (low MAE) to red (high MAE), relative to all errors, i.e. taken
together over all cells representing targets, episodes and horizons. The predominance of red at
the bottom shows the decrease in forecast accuracy toward the end of episode 2021, except for
alcoholic beverages, where the largest errors occurred in episode 2020. The lowest errors occur
in the forecasts for plant-based food products and miscellaneous food products during the 2018
episode. To get a better sense of the relative forecasting performance, we rank the models using
weighted rankings rshort and rlong. The weighted ranks reflect the relative performance at short
and long horizons. We compare the weighted ranks to its unweighted counterpart requal.

Let r be the (raw) rank of a model, such that r = 1 for the best model and r = M for the
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worst model, where each rank is computed for a given target, episode, and horizon. Figure B.1
shows all models for which r = 1 holds. The horizon-weighted cumulative ranks are defined as

rshort =
H∑

h=1

(H − h+ 1)

h̄
r, requal =

H∑
h=1

r, rlong =
H∑

h=1

h

h̄
r.

were H denotes the farthest forecast horizon and h̄ is the average of the numbers 1, . . . ,H (here
H = 12 and h̄ = 6.5). The normalization by the average rank makes the three ranks comparable.

The first weighted rank rshort assigns progressively smaller weights to increasing forecasting
horizons. This simple linear weighting scheme with descending weights emphasizes the short-
term forecasting performance of the model. Conversely, the second weighted rank rlong uses
ascending weights to emphasize the long-term performance. The unweighted rank treats all
forecast horizons equally and thus serves as a benchmark for the weighted ranks. The weighted
rankings help finding the model that consistently outperforms other models for different time
horizons. However, if one model performs best (low rank) in the short-term (1-4 months) and
worse than other models (relative higher rank) in long-term (9-12 months), using a combination
of several models may be superior to using a single model.

Figures B.3 to B.7 summarize the cumulative horizon-weighted ranking of the models for the
2018 and 2021 forecasts. For plant-based food products, we see that machine learning methods
(ELM) tend come on top of other models in 2018. The horizon-weighted rankings for these
models tend to be better (lower) for the long term then for the short term. The comparative
performance of the univariate ARMA model deteriorates from 2018 to 2021, a common pattern
as we shall see below.

For animal-based food products, we see good relative performance of time series models and
regression trees, with the ridge regression and BART showing the lowest forecast errors for this
target for all three data sets. The ARMA model performs surprisingly good. This pattern
holds for 2021 as well, apart from the ARMA model, whose relative performance deteriorates
drastically in times of crisis, especially over long forecasting horizons. The machine learning
models for this target tend to have the worst performance of all competing models.

In the case of miscellaneous food products, we remark on the relatively good performance
of the ARMA model, the ridge regression, and the random forest. The quality of the ARMA
model deteriorates sharply between 2018 and 2021.

For alcoholic beverages, the time series models (Hansen methods and regularized regressions)
as well as random forest consistently rank higher in the 2018 episode, but only when estimated
using the smallest data set that contains the promising indicators. Essentially, this implies that
the smaller the number of indicators the better the forecasting performance, strongly suggesting
the absence of informative indicators for this target. The fact that the univariate ARMA model
ranks highest supports this conjecture. The story changes in 2021, where the richer data sets
(Set 2, 3) deliver relatively better models, adding BART to the set of good models. The ridge
regression tends to perform best among all models, whereas the performance of other time series
models deteriorates, especially when they are estimated using richer data sets.

In the set of forecasts of non-alcoholic beverages computed in 2018, random forest performs
best by a significant margin, followed by ARMA and BART. The machine learning models
perform worse than other types of models in all episodes. The ARMA model comes out worst in
2021. The remaining time-series models rank among the worse in this most recent episode. The
tree-based models rank relatively better especially in the long-term, which is promising given
the general difficulty of making long-term forecasts during a crisis.
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The above results show no overall winner in terms of forecasting accuracy for all targets,
episodes, and time horizons. Within the best models listed in Figure B.1, time series and regres-
sion tree models tend to outperform machine learning models for medium-term (5-8 months)
to long-term (9-12 months) forecasts, which is broadly true for both calmer periods (2018) and
crisis periods (2020, 2021). Time series models perform quite well, especially lasso regression
and the more general elastic net. The lasso regression tends to impose stricter model selection,
which appears to be an advantage in our sample. The random forest model outperforms BART,
except for the forecasts for the year 2021. Among the three types of models, machine learning
models tend to perform worse, except for the forecasts for plant food in 2018 and 2019, mis-
cellaneous items in 2020, and alcoholic beverages in 2019. Among the four ELM models, the
models with linear and ridge functions in the output layer perform better than the lasso and
step regression variants. Based on this assessment, if we had to choose a winner, we would vote
for random forest as the best overall model, followed by BART and lasso regression.
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Table 4: MAE of best models by trimester.

Sample MAE per trimester
Mean Sd h1-h4 h5-h8 h9-h12

Plant

2018 0.8 0.6 0.6 0.4 0.4
2019 1.3 0.8 0.3 0.4 0.8
2020 1.9 0.9 1.0 1.2 0.9
2021 5.7 4.4 1.1 2.8 4.6
2018-2021 3.0 3.6 0.8 1.2 1.7

Animal

2018 1.9 1.0 0.7 0.6 0.9
2019 2.2 0.9 0.6 0.8 0.9
2020 1.7 1.5 0.8 1.0 1.4
2021 6.7 7.5 1.1 2.5 5.6
2018-2021 4.1 5.3 0.8 1.2 2.2

Misc.

2018 1.2 0.5 0.4 0.4 0.5
2019 1.3 0.9 0.4 0.5 0.7
2020 0.5 1.6 1.2 1.5 1.7
2021 2.7 3.7 1.7 1.4 2.5
2018-2021 1.8 2.5 0.9 1.0 1.4

Alcoholic

2018 0.9 0.4 0.7 0.6 0.7
2019 1.2 1.3 0.7 1.0 0.9
2020 0.9 2.1 1.4 2.1 2.2
2021 2.3 2.6 1.3 1.1 1.7
2018-2021 1.6 1.9 1.0 1.2 1.4

Non-alcoholic

2018 0.7 1.2 0.8 1.2 1.9
2019 0.8 1.2 1.0 1.3 1.0
2020 1.2 1.2 1.1 1.5 1.3
2021 6.1 6.1 1.7 2.0 4.8
2018-2021 3.1 4.7 1.2 1.5 2.3

The table shows the means and standard deviations of the yoy
growth rates by target and trimester as well as the mean absolute
forecast error (MAE) of the best model. Forecast errors increase
with the forecast horizon in all episodes. They have increased
steadily since 2018 and reached their maximum during the recent
energy price crisis.
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5 Current forecast

The above evaluation shows no clear winner among the models in terms of forecasting perfor-
mance. This raises the question of how to derive the final forecast from individual forecasts.
Splicing the forecasts of the best models for each horizon produces excessively volatile (jagged)
future paths that are difficult to interpret. Smoother forecasts can be obtained by combining all
forecasts to a final forecast for each horizon, which has the benefit of conveying the uncertainty
of the models through the variation in the forecasts. This approach will be followed to obtain
the current outlook for the inflation rates of the five product categories.

Forecasts can be combined in uninformative ways by using the median of all forecasts, sup-
plemented with an interquartile range to express model uncertainty. This approach provides
a final set of forecasts that is robust to outliers. The forecasts can also be combined in an
informative way, for example using a weighted average of all individual forecasts, where the
non-negative weights are inversely related to the average forecast error made in the past. Here
we use the MAE of the latest forecasts computed in 2021.

Let fm, m = 1, . . . ,M , be the forecasts of individual models for a given target and horizon,
and em be their forecast MAE. The final (MAE-weighted) forecast is computed as:

f =

∑M
m=1 fm/em∑M
m=1 1/em

.

The final error reduces to a simple average of individual errors when em = e for all m.
Figure 6 shows final forecasts combined from individual forecasts using either the median

(blue) or the inverse error weighting (red), as well as the interquartile range and the minimum
and maximum forecasts. The broad picture is that inflation rates for all types of food products
will gradually decline by the end of the forecast horizon in May 2024. The inflation rates remain
positive, so that prices will continue to rise throughout 2024 (compared to the previous year).
While some models predict negative inflation rates as early as the second half of 2023, the
interquartile range remains clearly above zero for all targets and horizons. The median and
error-weighted final forecasts align closely, except for animal-based food products, where the
median remains consistently below the error-weighted forecast for all forecast horizons.

In terms of the implied future inflation dynamics, the forecasts anticipate that inflation rates
in the second half of 2023 will be approximately 31

2 percentage points lower than those recorded
in the first half of the year. The largest decrease in inflation rates is expected for animal-based
food products, with a decline of 53

4 percentage points, while the smallest decrease is projected
for non-alcoholic beverages, at 13

4 percentage points. In total for 2023, the animal-based food
products would have the highest average inflation rate of 131

4 percent yoy, while non-alcoholic
beverages are expected to have the lowest average inflation rate of 81

2 percent yoy. The second
most dynamic category of products includes plant-based food products and alcoholic beverages.
Their inflation rates for 2023 clock in at 121

2 percent and 111
4 percent yoy, respectively.

Looking ahead to the first half of 2024, a further decrease in the average inflation rate of
approximately 43

4 percentage points can be expected across all five product categories compared
to the average of 2023. The highest decreases in inflation rates are projected for animal-based
food products, with a decline of 61

2 percentage points, while the lowest decreases are anticipated
for non-alcoholic beverages, at 23

4 percentage points.
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6 Concluding remarks

The current high inflation rates pose uncertainties about the persistence of inflation. The study
aims to provide reliable forecasts for the following categories of products: plant-based food prod-
ucts, animal-based food products, alcoholic beverages, non-alcoholic beverages, and a residual
category. The five categories are defined using weighted baskets of highly disaggregated CPI
data.

This study advocates a multi-model paradigm that combines the strengths of a diverse set
of forecasting models based on a rich set of monthly indicators, with separate models estimated
for each forecast horizon (up to twelve months). The set of indicators includes monthly business
cycle and trade indicators, prices of internationally traded commodities, import prices and
exchange rates, producer prices and wholesale prices, wages, financial market and business
sentiment indicators, and additional CPI components such as carbon fuels and electricity.

We evaluate the forecasting accuracy of time series models, regression trees, and machine
learning models in the pre-pandemic and post-pandemic periods. We find that time series models
(except the univariate ARMA model) and regression trees tend to work best, especially when
the number of informative indicators is limited. This is particularly true at medium to long
horizons. Since no individual model emerges as the definitive winner, the ensemble approach
allows for a more robust and comprehensive analysis of future trends.

The forecasting performance of models has declined since the outbreak of the pandemic and
subsequent political calamities that led to a sharp increase in energy prices and inflation rates.
The multi-model paradigm leverages model diversity. We found that splicing the forecasts of
the best models for each horizon results in erratic forecasts, while combining the forecasts of
all models for each horizon results in smoother future paths that can be used to express the
inherent model uncertainty. Beverages appear to be more difficult to forecast than foods, which
suggests a lack of informative leading indicators of beverage price inflation in our data set.

Based on weighted forecasts of all models (weighted by their recent errors), the current
outlook suggests that elevated inflation rates for food products will persist in the foreseeable
future in Austria. The analysis indicates that no deflationary trends can be expected until
well into 2024. These findings underscore the challenges faced by policymakers and economic
practitioners in formulating effective strategies to mitigate inflationary pressures and maintain
price stability. The insights provided in this study contribute to the broader understanding of
inflation dynamics and support policymakers in making informed decisions regarding monetary
policy, fiscal measures, and competition regulation in the retail markets.

Acknowledgments: We would like to thank Peter Reschenhofer, Astrid Czaloun, Ursula
Glauninger, Christine Kaufmann and Dietmar Weinberger for their help in preparing the data
and editing the manuscript.
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Figure 6: The current forecast till May 2024
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The figure shows the final forecasts combined from the forecasts of the individual models
using the median (blue), or the inverse MAE weighting (red). The interquartile range and
the minimum and maximum of the individual forecasts convey the uncertainty associated
with the use of different forecast models.
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A Target price series

Table 5: Plant-based foods (weights in percent).

Code Name Basket weight 2022 Basket weight 2023 Target weight 2022 Target weight 2023
002300 Nut cake 0.24 0.23 5.03 4.85
001000 Scone, handmade 0.22 0.22 4.60 4.68
000600 Rye bread 0.22 0.22 4.61 4.67
011400 Tomatoes 0.19 0.21 4.11 4.42
009700 Pickled cucumbers 0.18 0.17 3.75 3.56
000800 White bread 0.15 0.16 3.25 3.39
000900 Bread roll 0.14 0.15 3.02 3.14
007900 Dried fruit mix with nuts 0.14 0.14 3.00 2.97
011800 Potatoes 0.13 0.14 2.73 2.84
000700 Wholemeal bread 0.13 0.13 2.70 2.66
009200 Bananas 0.13 0.12 2.66 2.53
002000 Wheat flour 0.10 0.12 2.18 2.52
012800 Fruit drops, jelly 0.12 0.12 2.49 2.42
002400 Curd cheese cake 0.11 0.11 2.21 2.37
002100 Pasta 0.12 0.11 2.60 2.33
008500 Apples 0.11 0.11 2.38 2.23
007600 Pure vegetable oil 0.10 0.11 2.16 2.23
010900 Iceberg lettuce 0.10 0.10 2.12 2.10
011000 Paprika 0.09 0.10 1.90 2.09
001550 Cake 0.09 0.09 1.92 1.90
008900 Grapes 0.08 0.09 1.76 1.89
011700 Onions 0.08 0.08 1.62 1.76
010200 Potatoe chips 0.08 0.08 1.77 1.73
000100 Pizza, deep frozen 0.07 0.07 1.52 1.52
013800 Red pepper 0.07 0.07 1.57 1.50
013200 Crystal sugar 0.05 0.07 1.11 1.50
001400 Cereals 0.08 0.07 1.66 1.48
008800 Peaches, nectarines 0.07 0.07 1.55 1.44
008400 Strawberries 0.07 0.07 1.37 1.40
010600 Cucumbers 0.06 0.07 1.23 1.36
010800 Carrots 0.06 0.06 1.25 1.24
009400 Oranges 0.06 0.06 1.17 1.20
001110 Lye bun 0.05 0.06 1.13 1.18
011220 Packed salad 0.06 0.05 1.22 1.12
001100 Half baked buns 0.05 0.05 1.10 1.11
010700 Cauliflower 0.06 0.05 1.30 1.10
001500 Butter biscuits 0.06 0.05 1.18 1.09
001900 Long grain rice 0.05 0.05 1.10 1.04
009900 Mixed vegetables, deep frozen 0.05 0.05 0.97 1.03
008200 Tangerines 0.04 0.05 0.93 1.03
007800 Olive oil 0.06 0.05 1.18 1.02
009500 Lemons 0.05 0.05 1.14 1.00
010500 Champignons 0.04 0.04 0.89 0.89
009000 Musk melons, cantaloupes 0.05 0.04 1.05 0.89
010100 French fries, deep frozen 0.04 0.04 0.86 0.86
008440 Berries 0.05 0.04 0.97 0.85
001200 Ready-made dough 0.03 0.04 0.70 0.75
013000 Jam 0.03 0.04 0.72 0.73
001600 Wafers with hazelnut cream 0.04 0.03 0.75 0.71
008100 Raisins 0.04 0.03 0.75 0.66
012300 Tinned peaches 0.03 0.03 0.65 0.62
010000 Spinach, deep frozen 0.03 0.03 0.53 0.60
007400 Margarine 0.03 0.03 0.64 0.59
010490 Avocado 0.03 0.02 0.53 0.52
013100 Natural honey 0.02 0.02 0.49 0.48
008000 Peanuts salted 0.02 0.02 0.49 0.48
008600 Pears 0.03 0.02 0.53 0.47
009300 Kiwi 0.02 0.02 0.42 0.43
000200 Yeast dumpling, deep frozen 0.02 0.02 0.38 0.43
001700 Salty sticks 0.02 0.02 0.40 0.40
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Table 6: Animal-based foods (weights in percent).

Code Name Basket weight 2022 Basket weight 2023 Target weight 2022 Target weight 2023
004200 Pork ham 0.23 0.23 5.27 5.12
005660 Extended shelf life milk 0.19 0.21 4.35 4.75
006500 Eggs 0.21 0.21 4.82 4.71
004000 Sausages 0.21 0.20 4.71 4.48
005000 Chicken breast 0.17 0.19 3.97 4.13
006700 Gouda 0.16 0.18 3.70 3.95
007300 Butter 0.16 0.17 3.67 3.74
002600 Minced meat 0.14 0.16 3.24 3.65
004400 Pork sausage 0.14 0.16 3.29 3.48
006600 Emmentaler 0.13 0.14 2.98 3.04
004800 Turkey breast 0.11 0.12 2.60 2.62
003700 Pork cutlet 0.12 0.12 2.75 2.56
003800 Pork sirloin 0.11 0.11 2.54 2.44
002800 Bacon 0.11 0.11 2.59 2.42
003100 Roast beef 0.11 0.10 2.50 2.33
004600 Salami 0.10 0.10 2.36 2.32
005700 Milk shake 0.11 0.10 2.54 2.31
004700 Roast chicken 0.09 0.10 2.13 2.29
003200 Beef round 0.10 0.10 2.29 2.21
006800 Hard cheese 0.10 0.10 2.26 2.18
005400 Fresh fish 0.10 0.10 2.21 2.14
004100 Dry sausage 0.10 0.10 2.21 2.12
006200 Yoghurt fruit flavoured 0.09 0.09 2.04 2.09
005900 Whipped cream 0.08 0.08 1.86 1.88
006400 Yoghurt 0.09 0.08 1.94 1.87
007200 Mozzarella 0.07 0.08 1.65 1.74
003300 Beef shoulder 0.08 0.08 1.83 1.73
006900 Camembert 0.08 0.08 1.80 1.73
003600 Pork chops 0.08 0.08 1.77 1.70
004300 Turkey sausage 0.06 0.08 1.43 1.69
005100 Tunafish 0.08 0.07 1.79 1.64
007100 Fresh cream cheese 0.06 0.07 1.35 1.51
005800 Sour cream 0.06 0.07 1.40 1.48
005200 Codfish filet, deep frozen 0.07 0.07 1.57 1.46
005300 Fish fingers, deep frozen 0.06 0.06 1.30 1.41
002700 Smoked meat 0.05 0.05 1.21 1.19
005661 Fresh milk 0.05 0.05 1.22 1.18
003000 Beef goulash canned 0.04 0.05 0.96 1.09
002900 Liver pasty 0.05 0.04 1.03 1.00
005500 Smoked salmon 0.05 0.04 1.09 0.96
004900 Breaded chicken meat, deep frozen 0.04 0.04 0.92 0.91
003500 Pork belly 0.04 0.04 0.84 0.82
006100 Evaporated milk 0.04 0.04 0.86 0.82
006000 Curd cheese 0.02 0.03 0.57 0.60
002500 Veal cutlet 0.03 0.02 0.61 0.53
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Table 7: Miscellaneous food products and beverages (weights in percent).

Code Name Basket weight 2022 Basket weight 2023 Target weight 2022 Target weight 2023
Miscellaneous food products

012550 Chocolate box 0.14 0.14 14.31 14.11
014101 Convenience food, chilled 0.13 0.13 13.38 13.65
012200 Ice cream, family size 0.13 0.13 13.39 13.04
012500 Milk chocolate 0.12 0.11 11.59 10.85
012700 Chewing gum 0.09 0.09 9.35 9.59
014103 Baby food (milk) 0.07 0.07 7.24 7.50
014000 Ketchup 0.06 0.06 5.74 6.04
000300 Convenience food, deep frozen 0.05 0.05 4.99 5.11
013900 Mustard 0.05 0.05 4.68 5.01
014100 Vinegar 0.05 0.05 5.05 5.00
013400 Soup powder 0.05 0.05 4.99 4.96
012600 Chocolate bar 0.03 0.03 3.38 3.21
013700 Salt 0.02 0.02 1.92 1.93

Alcoholic beverages
016300 Bottled beer 0.35 0.35 22.39 23.00
015800 White wine 0.31 0.30 20.04 19.49
016100 Canned beer 0.27 0.27 17.39 17.30
015700 Red wine 0.19 0.18 11.98 11.82
016000 Sparkling wine 0.13 0.13 8.21 8.15
015500 Vodka 0.10 0.11 6.60 6.96
015400 Rum 0.07 0.07 4.31 4.38
015550 Liqueur 0.07 0.07 4.34 4.32
016250 Beer, special 0.04 0.04 2.63 2.59
016400 Mixed beer 0.03 0.03 2.12 1.98

Non-alcoholic beverages
014300 Coffee 0.20 0.21 15.95 16.94
015000 Cola 0.16 0.15 12.92 12.60
014800 Mineral or table water 0.14 0.15 11.44 12.09
014301 Coffeepads, caps 0.15 0.13 12.31 10.99
015200 Orange juice 0.11 0.12 9.19 9.74
014900 Soft drink carbonated 0.10 0.10 7.94 8.04
015300 Apple juice 0.09 0.08 7.04 6.95
014700 Energy drink 0.08 0.08 6.79 6.64
014200 Tea in bags 0.08 0.07 6.44 5.81
014302 Instant coffee 0.06 0.06 5.14 5.19
014600 Mineral water, flavoured 0.04 0.04 3.06 3.36
014500 Cocoa instant drink 0.02 0.02 1.77 1.65
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B Model selection

Figure B.1: Best models by forecast year and horizon

Horizon PLANT ANIMAL MISC ALCOHOLIC NON-ALCOHOLIC

1 BART – Set 1 BART – Set 2 Lasso – Set 2 Elastic Net – Set 3 Random Forest – Set 3

2 ELM Lasso – Set 1 BART – Set 2 Hansen Select – Set 1 Lasso – Set 3 BART – Set 2

3 ELM Linear – Set 2 Lasso – Set 3 BART – Set 2 Hansen Combine – Set 1 BART – Set 2

4 ELM Linear – Set 2 Random Forest – Set 1 Ridge – Set 2 Lasso – Set 2 BART – Set 2

5 ELM Step – Set 3 Random Forest – Set 2 Random Forest – Set 3 ARMA Random Forest – Set 2

6 ELM Step – Set 3 Random Forest – Set 2 Ridge – Set 3 Hansen Combine – Set 1 Elastic Net – Set 3

7 MPL – Set 1 Lasso – Set 1 Lasso – Set 2 ARMA Random Forest – Set 3

8 ELM Linear – Set 1 Lasso – Set 1 Random Forest – Set 1 ARMA Random Forest – Set 3

9 ELM Step – Set 3 Ridge – Set 1 ARMA ARMA Elastic Net – Set 3

10 ELM Step – Set 2 BART – Set 2 Random Forest – Set 1 ARMA Elastic Net – Set 2

11 ELM Step – Set 1 Random Forest – Set 3 Random Forest – Set 1 ARMA Lasso – Set 3

12 ELM Linear – Set 1 Elastic Net – Set 2 Random Forest – Set 1 ARMA ELM Lasso – Set 1

1 ARMA ELM Lasso – Set 2 Hansen Select – Set 1 ELM Linear – Set 2 ARMA
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8 Elastic Net – Set 2 Random Forest – Set 3 ARMA Hansen Select – Set 1 Random Forest – Set 3

9 Random Forest – Set 2 Random Forest – Set 2 ELM Ridge – Set 1 Hansen Combine – Set 1 Random Forest – Set 2
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5 Random Forest – Set 3 Random Forest – Set 1 Elastic Net – Set 2 Lasso – Set 2 Random Forest – Set 1

6 Elastic Net – Set 3 BART – Set 1 Elastic Net – Set 1 Lasso – Set 2 BART – Set 1

7 Random Forest – Set 3 Hansen Combine – Set 1 Ridge – Set 1 Ridge – Set 3 BART – Set 1

8 BART – Set 2 BART – Set 1 Lasso – Set 1 BART – Set 2 BART – Set 1

9 BART – Set 2 Ridge – Set 3 BART – Set 1 BART – Set 2 Random Forest – Set 3

10 Hansen Select – Set 1 Ridge – Set 3 Elastic Net – Set 1 Hansen Select – Set 1 Lasso – Set 2

11 Lasso – Set 1 Lasso – Set 3 Hansen Select – Set 1 MPL – Set 1 Random Forest – Set 2

12 Random Forest – Set 1 Ridge – Set 3 Lasso – Set 1 MPL – Set 1 Random Forest – Set 2
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Figure B.2: The spread of mean absolute forecast errors
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(a) Plant 2018
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(b) Animal 2018
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(c) Misc. 2018
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(d) Alcoholic 2018
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(e) Non-Alcoholic 2018
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(f) Plant 2021
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Figure B.3: Horizon-weighted model rankings (Plant)
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Figure B.4: Horizon-weighted model rankings (Animal)
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(a) Forecast year 2018
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(b) Forecast year 2021
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Figure B.5: Horizon-weighted model rankings (Misc.)
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(b) Forecast year 2021
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Figure B.6: Horizon-weighted model rankings (Alcoholic)
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(a) Forecast year 2018
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(b) Forecast year 2021
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Figure B.7: Horizon-weighted model rankings (Non-alcoholic)
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(a) Forecast year 2018
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(b) Forecast year 2021

40


